Systematic literature reviews (SLRs) play an essential role in summarising, synthesising and validating scientific evidence. In recent years, there has been a growing interest in using machine learning techniques to automate the identification of relevant studies for SLRs. However, the lack of standardised evaluation datasets makes comparing the performance of such automated literature screening systems difficult. In this paper, we analyse the citation screening evaluation datasets, revealing that many of the available datasets are either too small, suffer from data leakage or have limited applicability to systems treating automated literature screening as a classification task, as opposed to, for example, a retrieval or question-answering task. To address these challenges, we introduce CSMeD, a meta-dataset consolidating nine publicly released collections, providing unified access to 325 SLRs from the fields of medicine and computer science. CSMeD serves as a comprehensive resource for training and evaluating the performance of automated citation screening models. Additionally, we introduce CSMeD-FT, a new dataset designed explicitly for evaluating the full text publication screening task. To demonstrate the utility of CSMeD, we conduct experiments and establish baselines on new datasets.
Large Language Models (LLMs) have achieved remarkable results in the machine translation evaluation task, yet there remains a gap in knowledge regarding how they utilize the provided data to conduct evaluations. This study aims to explore how LLMs leverage source and reference information in evaluating translations, with the ultimate goal of better understanding the working mechanism of LLMs. To this end, we design the controlled experiments across various input modes and model types, and employ both coarse-grained and fine-grained prompts to discern the utility of source versus reference information. Surprisingly, we find that reference information significantly enhances the evaluation accuracy, while source information sometimes is counterproductive, indicating a lack of cross-lingual capability when using LLMs to evaluate translations. We further conduct a meta-evaluation for translation error detection of LLMs, observing a similar phenomenon. These findings also suggest a potential research direction for LLMs that fully exploits the cross-lingual capability of LLMs to achieve better performance in machine translation evaluation tasks.
We introduce a novel task, called Generalized Relation Discovery (GRD), for open-world relation extraction. GRD aims to identify unlabeled instances in existing pre-defined relations or discover novel relations by assigning instances to clusters as well as providing specific meanings for these clusters. The key challenges of GRD are how to mitigate the serious model biases caused by labeled pre-defined relations to learn effective relational representations and how to determine the specific semantics of novel relations during classifying or clustering unlabeled instances. We then propose a novel framework, SFGRD, for this task to solve the above issues by learning from semi-factuals in two stages. The first stage is semi-factual generation implemented by a tri-view debiased relation representation module, in which we take each original sentence as the main view and design two debiased views to generate semi-factual examples for this sentence. The second stage is semi-factual thinking executed by a dual-space tri-view collaborative relation learning module, where we design a cluster-semantic space and a class-index space to learn relational semantics and relation label indices, respectively. In addition, we devise alignment and selection strategies to integrate two spaces and establish a self-supervised learning loop for unlabeled data by doing semi-factual thinking across three views. Extensive experimental results show that SFGRD surpasses state-of-the-art models in terms of accuracy by 2.36\% $\sim$5.78\% and cosine similarity by 32.19\%$\sim$ 84.45\% for relation label index and relation semantic quality, respectively. To the best of our knowledge, we are the first to exploit the efficacy of semi-factuals in relation extraction.
We present improvements to Kimera, an open-source metric-semantic visual-inertial SLAM library. In particular, we enhance Kimera-VIO, the visual-inertial odometry pipeline powering Kimera, to support better feature tracking, more efficient keyframe selection, and various input modalities (eg monocular, stereo, and RGB-D images, as well as wheel odometry). Additionally, Kimera-RPGO and Kimera-PGMO, Kimera's pose-graph optimization backends, are updated to support modern outlier rejection methods - specifically, Graduated-Non-Convexity - for improved robustness to spurious loop closures. These new features are evaluated extensively on a variety of simulated and real robotic platforms, including drones, quadrupeds, wheeled robots, and simulated self-driving cars. We present comparisons against several state-of-the-art visual-inertial SLAM pipelines and discuss strengths and weaknesses of the new release of Kimera. The newly added features have been released open-source at //github.com/MIT-SPARK/Kimera.
In recent years, the field of neural machine translation (NMT) for SPARQL query generation has witnessed significant growth. Incorporating the copy mechanism with traditional encoder-decoder architectures and using pre-trained encoder-decoders and large language models have set new performance benchmarks. This paper presents various experiments that replicate and expand upon recent NMT-based SPARQL generation studies, comparing pre-trained language models (PLMs), non-pre-trained language models (NPLMs), and large language models (LLMs), highlighting the impact of question annotation and the copy mechanism and testing various fine-tuning methods using LLMs. In particular, we provide a systematic error analysis of the models and test their generalization ability. Our study demonstrates that the copy mechanism yields significant performance enhancements for most PLMs and NPLMs. Annotating the data is pivotal to generating correct URIs, with the "tag-within" strategy emerging as the most effective approach. Additionally, our findings reveal that the primary source of errors stems from incorrect URIs in SPARQL queries that are sometimes replaced with hallucinated URIs when using base models. This does not happen using the copy mechanism, but it sometimes leads to selecting wrong URIs among candidates. Finally, the performance of the tested LLMs fell short of achieving the desired outcomes.
Machine learning has emerged as a powerful solution to the modern challenges in accelerator physics. However, the limited availability of beam time, the computational cost of simulations, and the high-dimensionality of optimisation problems pose significant challenges in generating the required data for training state-of-the-art machine learning models. In this work, we introduce Cheetah, a PyTorch-based high-speed differentiable linear-beam dynamics code. Cheetah enables the fast collection of large data sets by reducing computation times by multiple orders of magnitude and facilitates efficient gradient-based optimisation for accelerator tuning and system identification. This positions Cheetah as a user-friendly, readily extensible tool that integrates seamlessly with widely adopted machine learning tools. We showcase the utility of Cheetah through five examples, including reinforcement learning training, gradient-based beamline tuning, gradient-based system identification, physics-informed Bayesian optimisation priors, and modular neural network surrogate modelling of space charge effects. The use of such a high-speed differentiable simulation code will simplify the development of machine learning-based methods for particle accelerators and fast-track their integration into everyday operations of accelerator facilities.
This paper introduces CADgpt, an innovative plugin integrating Natural Language Processing (NLP) with Rhino3D for enhancing 3D modelling in computer-aided design (CAD) environments. Leveraging OpenAI's GPT-4, CADgpt simplifies the CAD interface, enabling users, particularly beginners, to perform complex 3D modelling tasks through intuitive natural language commands. This approach significantly reduces the learning curve associated with traditional CAD software, fostering a more inclusive and engaging educational environment. The paper discusses CADgpt's technical architecture, including its integration within Rhino3D and the adaptation of GPT-4 capabilities for CAD tasks. It presents case studies demonstrating CADgpt's efficacy in various design scenarios, highlighting its potential to democratise design education by making sophisticated design tools accessible to a broader range of students. The discussion further explores CADgpt's implications for pedagogy and curriculum development, emphasising its role in enhancing creative exploration and conceptual thinking in design education. Keywords: Natural Language Processing, Computer-Aided Design, 3D Modelling, Design Automation, Design Education, Architectural Education
This review paper explores Multimodal Large Language Models (MLLMs), which integrate Large Language Models (LLMs) like GPT-4 to handle multimodal data such as text and vision. MLLMs demonstrate capabilities like generating image narratives and answering image-based questions, bridging the gap towards real-world human-computer interactions and hinting at a potential pathway to artificial general intelligence. However, MLLMs still face challenges in processing the semantic gap in multimodality, which may lead to erroneous generation, posing potential risks to society. Choosing the appropriate modality alignment method is crucial, as improper methods might require more parameters with limited performance improvement. This paper aims to explore modality alignment methods for LLMs and their existing capabilities. Implementing modality alignment allows LLMs to address environmental issues and enhance accessibility. The study surveys existing modal alignment methods in MLLMs into four groups: (1) Multimodal Converters that change data into something LLMs can understand; (2) Multimodal Perceivers to improve how LLMs perceive different types of data; (3) Tools Assistance for changing data into one common format, usually text; and (4) Data-Driven methods that teach LLMs to understand specific types of data in a dataset. This field is still in a phase of exploration and experimentation, and we will organize and update various existing research methods for multimodal information alignment.
Knowledge plays a critical role in artificial intelligence. Recently, the extensive success of pre-trained language models (PLMs) has raised significant attention about how knowledge can be acquired, maintained, updated and used by language models. Despite the enormous amount of related studies, there still lacks a unified view of how knowledge circulates within language models throughout the learning, tuning, and application processes, which may prevent us from further understanding the connections between current progress or realizing existing limitations. In this survey, we revisit PLMs as knowledge-based systems by dividing the life circle of knowledge in PLMs into five critical periods, and investigating how knowledge circulates when it is built, maintained and used. To this end, we systematically review existing studies of each period of the knowledge life cycle, summarize the main challenges and current limitations, and discuss future directions.
We study the problem of learning representations of entities and relations in knowledge graphs for predicting missing links. The success of such a task heavily relies on the ability of modeling and inferring the patterns of (or between) the relations. In this paper, we present a new approach for knowledge graph embedding called RotatE, which is able to model and infer various relation patterns including: symmetry/antisymmetry, inversion, and composition. Specifically, the RotatE model defines each relation as a rotation from the source entity to the target entity in the complex vector space. In addition, we propose a novel self-adversarial negative sampling technique for efficiently and effectively training the RotatE model. Experimental results on multiple benchmark knowledge graphs show that the proposed RotatE model is not only scalable, but also able to infer and model various relation patterns and significantly outperform existing state-of-the-art models for link prediction.
We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.