亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The $n$-vehicle exploration problem (NVEP) is a combinatorial optimization problem, which tries to find an optimal permutation of a fleet to maximize the length traveled by the last vehicle. NVEP has a fractional form of objective function, and its computational complexity of general case remains open. We show that Hamiltonian Path $\leq_P$ NVEP, and prove that NVEP is NP-complete.

相關內容

Multi-Agent Path Finding (MAPF) is a fundamental motion coordination problem arising in multi-agent systems with a wide range of applications. The problem's intractability has led to extensive research on improving the scalability of solvers for it. Since optimal solvers can struggle to scale, a major challenge that arises is understanding what makes MAPF hard. We tackle this challenge through a fine-grained complexity analysis of time-optimal MAPF on 2D grids, thereby closing two gaps and identifying a new tractability frontier. First, we show that 2-colored MAPF, i.e., where the agents are divided into two teams, each with its own set of targets, remains NP-hard. Second, for the flowtime objective (also called sum-of-costs), we show that it remains NP-hard to find a solution in which agents have an individually optimal cost, which we call an individually optimal solution. The previously tightest results for these MAPF variants are for (non-grid) planar graphs. We use a single hardness construction that replaces, strengthens, and unifies previous proofs. We believe that it is also simpler than previous proofs for the planar case as it employs minimal gadgets that enable its full visualization in one figure. Finally, for the flowtime objective, we establish a tractability frontier based on the number of directions agents can move in. Namely, we complement our hardness result, which holds for three directions, with an efficient algorithm for finding an individually optimal solution if only two directions are allowed. This result sheds new light on the structure of optimal solutions, which may help guide algorithm design for the general problem.

This paper introduces the application of the weak Galerkin (WG) finite element method to solve the Steklov eigenvalue problem, focusing on obtaining lower bounds of the eigenvalues. The noncomforming finite element space of the weak Galerkin finite element method is the key to obtain lower bounds of the eigenvalues. The arbitary high order lower bound estimates are given and the guaranteed lower bounds of the eigenvalues are also discussed. Numerical results demonstrate the accuracy and lower bound property of the numerical scheme.

A future millimeter-wave (mmWave) massive multiple-input and multiple-output (MIMO) system may serve hundreds or thousands of users at the same time; thus, research on multiple access technology is particularly important.Moreover, due to the short-wavelength nature of a mmWave, large-scale arrays are easier to implement than microwaves, while their directivity and sparseness make the physical beamforming effect of precoding more prominent.In consideration of the mmWave angle division multiple access (ADMA) system based on precoding, this paper investigates the influence of the angle distribution on system performance, which is denoted as the angular multiplexing gain.Furthermore, inspired by the above research, we transform the ADMA user grouping problem to maximize the system sum-rate into the inter-user angular spacing equalization problem.Then, the form of the optimal solution for the approximate problem is derived, and the corresponding grouping algorithm is proposed.The simulation results demonstrate that the proposed algorithm performs better than the comparison methods.Finally, a complexity analysis also shows that the proposed algorithm has extremely low complexity.

This study builds on a recent paper by Lai et al [Appl. Comput. Harmon. Anal., 2018] in which a novel boundary integral formulation is presented for scalar wave scattering analysis in two-dimensional layered and half-spaces. The seminal paper proposes a hybrid integral representation that combines the Sommerfeld integral and layer potential to efficiently deal with the boundaries of infinite length. In this work, we modify the integral formulation to eliminate the fictitious eigenvalues by employing Burton-Miller's approach. We also discuss reasonable parameter settings for the hybrid integral equation to ensure efficient and accurate numerical solutions. Furthermore, we extend the modified formulation for the scattering from a cavity in a half-space whose boundary is locally perturbed. To address the cavity scattering, we introduce a virtual boundary enclosing the cavity and couple the integral equation on it with the hybrid equation. The effectiveness of the proposed method is demonstrated through numerical examples.

We examine and compare several iterative methods for solving large-scale eigenvalue problems arising from nuclear structure calculations. In particular, we discuss the possibility of using block Lanczos method, a Chebyshev filtering based subspace iterations and the residual minimization method accelerated by direct inversion of iterative subspace (RMM-DIIS) and describe how these algorithms compare with the standard Lanczos algorithm and the locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm. Although the RMM-DIIS method does not exhibit rapid convergence when the initial approximations to the desired eigenvectors are not sufficiently accurate, it can be effectively combined with either the block Lanczos or the LOBPCG method to yield a hybrid eigensolver that has several desirable properties. We will describe a few practical issues that need to be addressed to make the hybrid solver efficient and robust.

Diffusion models, as a kind of powerful generative model, have given impressive results on image super-resolution (SR) tasks. However, due to the randomness introduced in the reverse process of diffusion models, the performances of diffusion-based SR models are fluctuating at every time of sampling, especially for samplers with few resampled steps. This inherent randomness of diffusion models results in ineffectiveness and instability, making it challenging for users to guarantee the quality of SR results. However, our work takes this randomness as an opportunity: fully analyzing and leveraging it leads to the construction of an effective plug-and-play sampling method that owns the potential to benefit a series of diffusion-based SR methods. More in detail, we propose to steadily sample high-quality SR images from pretrained diffusion-based SR models by solving diffusion ordinary differential equations (diffusion ODEs) with optimal boundary conditions (BCs) and analyze the characteristics between the choices of BCs and their corresponding SR results. Our analysis shows the route to obtain an approximately optimal BC via an efficient exploration in the whole space. The quality of SR results sampled by the proposed method with fewer steps outperforms the quality of results sampled by current methods with randomness from the same pretrained diffusion-based SR model, which means that our sampling method ``boosts'' current diffusion-based SR models without any additional training.

Phylogenetic networks are a flexible model of evolution that can represent reticulate evolution and handle complex data. Tree-based networks, which are phylogenetic networks that have a spanning tree with the same root and leaf-set as the network itself, have been well studied. However, not all networks are tree-based. Francis-Semple-Steel (2018) thus introduced several indices to measure the deviation of rooted binary phylogenetic networks $N$ from being tree-based, such as the minimum number $\delta^\ast(N)$ of additional leaves needed to make $N$ tree-based, and the minimum difference $\eta^\ast(N)$ between the number of vertices of $N$ and the number of vertices of a subtree of $N$ that shares the root and leaf set with $N$. Hayamizu (2021) has established a canonical decomposition of almost-binary phylogenetic networks of $N$, called the maximal zig-zag trail decomposition, which has many implications including a linear time algorithm for computing $\delta^\ast(N)$. The Maximum Covering Subtree Problem (MCSP) is the problem of computing $\eta^\ast(N)$, and Davidov et al. (2022) showed that this can be solved in polynomial time (in cubic time when $N$ is binary) by an algorithm for the minimum cost flow problem. In this paper, under the assumption that $N$ is almost-binary (i.e. each internal vertex has in-degree and out-degree at most two), we show that $\delta^\ast(N)\leq \eta^\ast (N)$ holds, which is tight, and give a characterisation of such phylogenetic networks $N$ that satisfy $\delta^\ast(N)=\eta^\ast(N)$. Our approach uses the canonical decomposition of $N$ and focuses on how the maximal W-fences (i.e. the forbidden subgraphs of tree-based networks) are connected to maximal M-fences in the network $N$. Our results introduce a new class of phylogenetic networks for which MCSP can be solved in linear time, which can be seen as a generalisation of tree-based networks.

When dealing with electro or magnetoencephalography records, many supervised prediction tasks are solved by working with covariance matrices to summarize the signals. Learning with these matrices requires using Riemanian geometry to account for their structure. In this paper, we propose a new method to deal with distributions of covariance matrices and demonstrate its computational efficiency on M/EEG multivariate time series. More specifically, we define a Sliced-Wasserstein distance between measures of symmetric positive definite matrices that comes with strong theoretical guarantees. Then, we take advantage of its properties and kernel methods to apply this distance to brain-age prediction from MEG data and compare it to state-of-the-art algorithms based on Riemannian geometry. Finally, we show that it is an efficient surrogate to the Wasserstein distance in domain adaptation for Brain Computer Interface applications.

Probabilistic solvers provide a flexible and efficient framework for simulation, uncertainty quantification, and inference in dynamical systems. However, like standard solvers, they suffer performance penalties for certain stiff systems, where small steps are required not for reasons of numerical accuracy but for the sake of stability. This issue is greatly alleviated in semi-linear problems by the probabilistic exponential integrators developed in this paper. By including the fast, linear dynamics in the prior, we arrive at a class of probabilistic integrators with favorable properties. Namely, they are proven to be L-stable, and in a certain case reduce to a classic exponential integrator -- with the added benefit of providing a probabilistic account of the numerical error. The method is also generalized to arbitrary non-linear systems by imposing piece-wise semi-linearity on the prior via Jacobians of the vector field at the previous estimates, resulting in probabilistic exponential Rosenbrock methods. We evaluate the proposed methods on multiple stiff differential equations and demonstrate their improved stability and efficiency over established probabilistic solvers. The present contribution thus expands the range of problems that can be effectively tackled within probabilistic numerics.

Linear discriminant analysis (LDA) has been a useful tool in pattern recognition and data analysis research and practice. While linearity of class boundaries cannot always be expected, nonlinear projections through pre-trained deep neural networks have served to map complex data onto feature spaces in which linear discrimination has served well. The solution to binary LDA is obtained by eigenvalue analysis of within-class and between-class scatter matrices. It is well known that the multiclass LDA is solved by an extension to the binary LDA, a generalised eigenvalue problem, from which the largest subspace that can be extracted is of dimension one lower than the number of classes in the given problem. In this paper, we show that, apart from the first of the discriminant directions, the generalised eigenanalysis solution to multiclass LDA does neither yield orthogonal discriminant directions nor maximise discrimination of projected data along them. Surprisingly, to the best of our knowledge, this has not been noted in decades of literature on LDA. To overcome this drawback, we present a derivation with a strict theoretical support for sequentially obtaining discriminant directions that are orthogonal to previously computed ones and maximise in each step the Fisher criterion. We show distributions of projections along these axes and demonstrate that discrimination of data projected onto these discriminant directions has optimal separation, which is much higher than those from the generalised eigenvectors of the multiclass LDA. Using a wide range of benchmark tasks, we present a comprehensive empirical demonstration that on a number of pattern recognition and classification problems, the optimal discriminant subspaces obtained by the proposed method, referred to as GO-LDA (Generalised Optimal LDA), can offer superior accuracy.

北京阿比特科技有限公司