亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we want to give an overview on which pragmatic abilities have been tested in LLMs so far and how these tests have been carried out. To do this, we first discuss the scope of the field of pragmatics and suggest a subdivision into discourse pragmatics and interactional pragmatics. We give a non-exhaustive overview of the phenomena of those two subdomains and the methods traditionally used to analyze them. We subsequently consider the resulting heterogeneous set of phenomena and methods as a starting point for our survey of work on discourse pragmatics and interactional pragmatics in the context of LLMs.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 生成模型 · AI · INTERACT · motivation ·
2024 年 10 月 3 日

LLMs are increasingly being used in workflows involving generating content to be consumed by humans (e.g., marketing) and also in directly interacting with humans (e.g., through chatbots). The development of such systems that are capable of generating verifiably persuasive messages presents both opportunities and challenges for society. On the one hand, such systems could positively impact domains like advertising and social good, such as addressing drug addiction, and on the other, they could be misused for spreading misinformation and shaping political opinions. To channel LLMs' impact on society, we need to develop systems to measure and benchmark their persuasiveness. With this motivation, we introduce PersuasionBench and PersuasionArena, the first large-scale benchmark and arena containing a battery of tasks to measure the persuasion ability of generative models automatically. We investigate to what extent LLMs know and leverage linguistic patterns that can help them generate more persuasive language. Our findings indicate that the persuasiveness of LLMs correlates positively with model size, but smaller models can also be made to have a higher persuasiveness than much larger models. Notably, targeted training using synthetic and natural datasets significantly enhances smaller models' persuasive capabilities, challenging scale-dependent assumptions. Our findings carry key implications for both model developers and policymakers. For instance, while the EU AI Act and California's SB-1047 aim to regulate AI models based on the number of floating point operations, we demonstrate that simple metrics like this alone fail to capture the full scope of AI's societal impact. We invite the community to explore and contribute to PersuasionArena and PersuasionBench, available at //bit.ly/measure-persuasion, to advance our understanding of AI-driven persuasion and its societal implications.

We introduce the term Super-Reactive Systems to refer to reactive systems whose construction and behavior are complex, constantly changing and evolving, and heavily interwoven with other systems and the physical world. Finding hidden faults in such systems early in planning and development is critical for human safety, the environment, society and the economy. However, the complexity of the system and its interactions and the absence of adequate technical details pose a great obstacle. We propose an architecture for models and tools to overcome such barriers and enable simulation, systematic analysis, and fault detection and handling, early in the development of super-reactive systems. The approach is facilitated by the inference and abstraction capabilities and the power and knowledge afforded by large language models and associated AI tools. It is based on: (i) deferred, just-in-time interpretation of model elements that are stored in natural language form, and (ii) early capture of tacit interdependencies among seemingly orthogonal requirements.

In this paper, we propose a generalized shift-splitting (GSS) preconditioner, along with its two relaxed variants to solve the double saddle point problem (DSPP). The convergence of the associated GSS iterative method is analyzed, and sufficient conditions for its convergence are established. Spectral analyses are performed to derive sharp bounds for the eigenvalues of the preconditioned matrices. Numerical experiments based on examples arising from the PDE-constrained optimization problems demonstrate the effectiveness and robustness of the proposed preconditioners compared with existing state-of-the-art preconditioners.

In this work, we aim to characterize the statistical complexity of realizable regression both in the PAC learning setting and the online learning setting. Previous work had established the sufficiency of finiteness of the fat shattering dimension for PAC learnability and the necessity of finiteness of the scaled Natarajan dimension, but little progress had been made towards a more complete characterization since the work of Simon (SICOMP '97). To this end, we first introduce a minimax instance optimal learner for realizable regression and propose a novel dimension that both qualitatively and quantitatively characterizes which classes of real-valued predictors are learnable. We then identify a combinatorial dimension related to the Graph dimension that characterizes ERM learnability in the realizable setting. Finally, we establish a necessary condition for learnability based on a combinatorial dimension related to the DS dimension, and conjecture that it may also be sufficient in this context. Additionally, in the context of online learning we provide a dimension that characterizes the minimax instance optimal cumulative loss up to a constant factor and design an optimal online learner for realizable regression, thus resolving an open question raised by Daskalakis and Golowich in STOC '22.

In this study, we address the challenge of constructing continuous three-dimensional (3D) models that accurately represent uncertain surfaces, derived from noisy and incomplete LiDAR scanning data. Building upon our prior work, which utilized the Gaussian Process (GP) and Gaussian Mixture Model (GMM) for structured building models, we introduce a more generalized approach tailored for complex surfaces in urban scenes, where GMM Regression and GP with derivative observations are applied. A Hierarchical GMM (HGMM) is employed to optimize the number of GMM components and speed up the GMM training. With the prior map obtained from HGMM, GP inference is followed for the refinement of the final map. Our approach models the implicit surface of the geo-object and enables the inference of the regions that are not completely covered by measurements. The integration of GMM and GP yields well-calibrated uncertainties alongside the surface model, enhancing both accuracy and reliability. The proposed method is evaluated on real data collected by a mobile mapping system. Compared to the performance in mapping accuracy and uncertainty quantification of other state-of-the-art methods, the proposed method achieves lower RMSEs, higher log-likelihood values and lower computational costs for the evaluated datasets.

Quantum computing is getting increasing interest from both academia and industry, and the quantum software landscape has been growing rapidly. The quantum software stack comprises quantum programs, implementing algorithms, and platforms like IBM Qiskit, Google Cirq, and Microsoft Q#, enabling their development. To ensure the reliability and performance of quantum software, various techniques for testing and analyzing it have been proposed, such as test generation, bug pattern detection, and circuit optimization. However, the large amount of work and the fact that work on quantum software is performed by several research communities, make it difficult to get a comprehensive overview of the existing techniques. In this work, we provide an extensive survey of the state of the art in testing and analysis of quantum software. We discuss literature from several research communities, including quantum computing, software engineering, programming languages, and formal methods. Our survey covers a wide range of topics, including expected and unexpected behavior of quantum programs, testing techniques, program analysis approaches, optimizations, and benchmarks for testing and analyzing quantum software. We create novel connections between the discussed topics and present them in an accessible way. Finally, we discuss key challenges and open problems to inspire future research.

Machine-learning technologies are seeing increased deployment in real-world market scenarios. In this work, we explore the strategic behaviors of large language models (LLMs) when deployed as autonomous agents in multi-commodity markets, specifically within Cournot competition frameworks. We examine whether LLMs can independently engage in anti-competitive practices such as collusion or, more specifically, market division. Our findings demonstrate that LLMs can effectively monopolize specific commodities by dynamically adjusting their pricing and resource allocation strategies, thereby maximizing profitability without direct human input or explicit collusion commands. These results pose unique challenges and opportunities for businesses looking to integrate AI into strategic roles and for regulatory bodies tasked with maintaining fair and competitive markets. The study provides a foundation for further exploration into the ramifications of deferring high-stakes decisions to LLM-based agents.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

北京阿比特科技有限公司