亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Gaussian smoothed sliced Wasserstein distance has been recently introduced for comparing probability distributions, while preserving privacy on the data. It has been shown, in applications such as domain adaptation, to provide performances similar to its non-private (non-smoothed) counterpart. However, the computational and statistical properties of such a metric is not yet been well-established. In this paper, we analyze the theoretical properties of this distance as well as those of generalized versions denoted as Gaussian smoothed sliced divergences. We show that smoothing and slicing preserve the metric property and the weak topology. We also provide results on the sample complexity of such divergences. Since, the privacy level depends on the amount of Gaussian smoothing, we analyze the impact of this parameter on the divergence. We support our theoretical findings with empirical studies of Gaussian smoothed and sliced version of Wassertein distance, Sinkhorn divergence and maximum mean discrepancy (MMD). In the context of privacy-preserving domain adaptation, we confirm that those Gaussian smoothed sliced Wasserstein and MMD divergences perform very well while ensuring data privacy.

相關內容

Empirical likelihood enables a nonparametric, likelihood-driven style of inference without restrictive assumptions routinely made in parametric models. We develop a framework for applying empirical likelihood to the analysis of experimental designs, addressing issues that arise from blocking and multiple hypothesis testing. In addition to popular designs such as balanced incomplete block designs, our approach allows for highly unbalanced, incomplete block designs. Based on all these designs, we derive an asymptotic multivariate chi-square distribution for a set of empirical likelihood test statistics. Further, we propose two single-step multiple testing procedures: asymptotic Monte Carlo and nonparametric bootstrap. Both procedures asymptotically control the generalized family-wise error rate and efficiently construct simultaneous confidence intervals for comparisons of interest without explicitly considering the underlying covariance structure. A simulation study demonstrates that the performance of the procedures is robust to violations of standard assumptions of linear mixed models. Significantly, considering the asymptotic nature of empirical likelihood, the nonparametric bootstrap procedure performs well even for small sample sizes. We also present an application to experiments on a pesticide. Supplementary materials for this article are available online.

We study the problem of designing consistent sequential one- and two-sample tests in a nonparametric setting. Guided by the principle of \emph{testing by betting}, we reframe the task of constructing sequential tests into that of selecting payoff functions that maximize the wealth of a fictitious bettor, betting against the null in a repeated game. The resulting sequential test rejects the null when the bettor's wealth process exceeds an appropriate threshold. We propose a general strategy for selecting payoff functions as predictable estimates of the \emph{witness function} associated with the variational representation of some statistical distance measures, such as integral probability metrics~(IPMs) and $\varphi$-divergences. Overall, this approach ensures that (i) the wealth process is a non-negative martingale under the null, thus allowing tight control over the type-I error, and (ii) it grows to infinity almost surely under the alternative, thus implying consistency. We accomplish this by designing composite e-processes that remain bounded in expectation under the null, but grow to infinity under the alternative. We instantiate the general test for some common distance metrics to obtain sequential versions of Kolmogorov-Smirnov~(KS) test, $\chi^2$-test and kernel-MMD test, and empirically demonstrate their ability to adapt to the unknown hardness of the problem. The sequential testing framework constructed in this paper is versatile, and we end with a discussion on applying these ideas to two related problems: testing for higher-order stochastic dominance, and testing for symmetry.

In this work, we delve into the nonparametric empirical Bayes theory and approximate the classical Bayes estimator by a truncation of the generalized Laguerre series and then estimate its coefficients by minimizing the prior risk of the estimator. The minimization process yields a system of linear equations the size of which is equal to the truncation level. We focus on the empirical Bayes estimation problem when the mixing distribution, and therefore the prior distribution, has a support on the positive real half-line or a subinterval of it. By investigating several common mixing distributions, we develop a strategy on how to select the parameter of the generalized Laguerre function basis so that our estimator {possesses a finite} variance. We show that our generalized Laguerre empirical Bayes approach is asymptotically optimal in the minimax sense. Finally, our convergence rate is compared and contrasted with {several} results from the literature.

We establish estimates on the error made by the Deep Ritz Method for elliptic problems on the space $H^1(\Omega)$ with different boundary conditions. For Dirichlet boundary conditions, we estimate the error when the boundary values are approximately enforced through the boundary penalty method. Our results apply to arbitrary and in general non linear classes $V\subseteq H^1(\Omega)$ of ansatz functions and estimate the error in dependence of the optimization accuracy, the approximation capabilities of the ansatz class and -- in the case of Dirichlet boundary values -- the penalisation strength $\lambda$. For non-essential boundary conditions the error of the Ritz method decays with the same rate as the approximation rate of the ansatz classes. For essential boundary conditions, given an approximation rate of $r$ in $H^1(\Omega)$ and an approximation rate of $s$ in $L^2(\partial\Omega)$ of the ansatz classes, the optimal decay rate of the estimated error is $\min(s/2, r)$ and achieved by choosing $\lambda_n\sim n^{s}$. We discuss the implications for ansatz classes which are given through ReLU networks and the relation to existing estimates for finite element functions.

Parameters of the covariance kernel of a Gaussian process model often need to be estimated from the data generated by an unknown Gaussian process. We consider fixed-domain asymptotics of the maximum likelihood estimator of the scale parameter under smoothness misspecification. If the covariance kernel of the data-generating process has smoothness $\nu_0$ but that of the model has smoothness $\nu \geq \nu_0$, we prove that the expectation of the maximum likelihood estimator is of the order $N^{2(\nu-\nu_0)/d}$ if the $N$ observation points are quasi-uniform in $[0, 1]^d$. This indicates that maximum likelihood estimation of the scale parameter alone is sufficient to guarantee the correct rate of decay of the conditional variance. We also discuss a connection the expected maximum likelihood estimator has to Driscoll's theorem on sample path properties of Gaussian processes. The proofs are based on reproducing kernel Hilbert space techniques and worst-case case rates for approximation in Sobolev spaces.

We study the expressive power of subrecursive probabilistic higher-order calculi. More specifically, we show that endowing a very expressive deterministic calculus like G\"odel's $\mathbb{T}$ with various forms of probabilistic choice operators may result in calculi which are not equivalent as for the class of distributions they give rise to, although they all guarantee almost-sure termination. Along the way, we introduce a probabilistic variation of the classic reducibility technique, and we prove that the simplest form of probabilistic choice leaves the expressive power of $\mathbb{T}$ essentially unaltered. The paper ends with some observations about the functional expressive power: expectedly, all the considered calculi capture the functions which $\mathbb{T}$ itself represents, at least when standard notions of observations are considered.

We provide guarantees for approximate Gaussian Process (GP) regression resulting from two common low-rank kernel approximations: based on random Fourier features, and based on truncating the kernel's Mercer expansion. In particular, we bound the Kullback-Leibler divergence between an exact GP and one resulting from one of the afore-described low-rank approximations to its kernel, as well as between their corresponding predictive densities, and we also bound the error between predictive mean vectors and between predictive covariance matrices computed using the exact versus using the approximate GP. We provide experiments on both simulated data and standard benchmarks to evaluate the effectiveness of our theoretical bounds.

In this paper we study the convergence of generative adversarial networks (GANs) from the perspective of the informativeness of the gradient of the optimal discriminative function. We show that GANs without restriction on the discriminative function space commonly suffer from the problem that the gradient produced by the discriminator is uninformative to guide the generator. By contrast, Wasserstein GAN (WGAN), where the discriminative function is restricted to $1$-Lipschitz, does not suffer from such a gradient uninformativeness problem. We further show in the paper that the model with a compact dual form of Wasserstein distance, where the Lipschitz condition is relaxed, also suffers from this issue. This implies the importance of Lipschitz condition and motivates us to study the general formulation of GANs with Lipschitz constraint, which leads to a new family of GANs that we call Lipschitz GANs (LGANs). We show that LGANs guarantee the existence and uniqueness of the optimal discriminative function as well as the existence of a unique Nash equilibrium. We prove that LGANs are generally capable of eliminating the gradient uninformativeness problem. According to our empirical analysis, LGANs are more stable and generate consistently higher quality samples compared with WGAN.

We propose the Wasserstein Auto-Encoder (WAE)---a new algorithm for building a generative model of the data distribution. WAE minimizes a penalized form of the Wasserstein distance between the model distribution and the target distribution, which leads to a different regularizer than the one used by the Variational Auto-Encoder (VAE). This regularizer encourages the encoded training distribution to match the prior. We compare our algorithm with several other techniques and show that it is a generalization of adversarial auto-encoders (AAE). Our experiments show that WAE shares many of the properties of VAEs (stable training, encoder-decoder architecture, nice latent manifold structure) while generating samples of better quality, as measured by the FID score.

Methods that align distributions by minimizing an adversarial distance between them have recently achieved impressive results. However, these approaches are difficult to optimize with gradient descent and they often do not converge well without careful hyperparameter tuning and proper initialization. We investigate whether turning the adversarial min-max problem into an optimization problem by replacing the maximization part with its dual improves the quality of the resulting alignment and explore its connections to Maximum Mean Discrepancy. Our empirical results suggest that using the dual formulation for the restricted family of linear discriminators results in a more stable convergence to a desirable solution when compared with the performance of a primal min-max GAN-like objective and an MMD objective under the same restrictions. We test our hypothesis on the problem of aligning two synthetic point clouds on a plane and on a real-image domain adaptation problem on digits. In both cases, the dual formulation yields an iterative procedure that gives more stable and monotonic improvement over time.

北京阿比特科技有限公司