亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper focuses on stochastic methods for solving smooth non-convex strongly-concave min-max problems, which have received increasing attention due to their potential applications in deep learning (e.g., deep AUC maximization, distributionally robust optimization). However, most of the existing algorithms are slow in practice, and their analysis revolves around the convergence to a nearly stationary point. We consider leveraging the Polyak-\L ojasiewicz (PL) condition to design faster stochastic algorithms with stronger convergence guarantee. Although PL condition has been utilized for designing many stochastic minimization algorithms, their applications for non-convex min-max optimization remain rare. In this paper, we propose and analyze a generic framework of proximal epoch-based method with many well-known stochastic updates embeddable. Fast convergence is established in terms of both {\bf the primal objective gap and the duality gap}. Compared with existing studies, (i) our analysis is based on a novel Lyapunov function consisting of the primal objective gap and the duality gap of a regularized function, and (ii) the results are more comprehensive with improved rates that have better dependence on the condition number under different assumptions. We also conduct deep and non-deep learning experiments to verify the effectiveness of our methods.

相關內容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存儲技術會議。 Publisher:USENIX。 SIT:

We consider an elliptic linear-quadratic parameter estimation problem with a finite number of parameters. A novel a priori bound for the parameter error is proved and, based on this bound, an adaptive finite element method driven by an a posteriori error estimator is presented. Unlike prior results in the literature, our estimator, which is composed of standard energy error residual estimators for the state equation and suitable co-state problems, reflects the faster convergence of the parameter error compared to the (co)-state variables. We show optimal convergence rates of our method; in particular and unlike prior works, we prove that the estimator decreases with a rate that is the sum of the best approximation rates of the state and co-state variables. Experiments confirm that our method matches the convergence rate of the parameter error.

This paper considers the one-bit precoding problem for the multiuser downlink massive multiple-input multiple-output (MIMO) system with phase shift keying (PSK) modulation and focuses on the celebrated constructive interference (CI)-based problem formulation. The existence of the discrete one-bit constraint makes the problem generally hard to solve. In this paper, we propose an efficient negative $\ell_1$ penalty approach for finding a high-quality solution of the considered problem. Specifically, we first propose a novel negative $\ell_1$ penalty model, which penalizes the one-bit constraint into the objective with a negative $\ell_1$-norm term, and show the equivalence between (global and local) solutions of the original problem and the penalty problem when the penalty parameter is sufficiently large. We further transform the penalty model into an equivalent min-max problem and propose an efficient alternating optimization (AO) algorithm for solving it. The AO algorithm enjoys low per-iteration complexity and is guaranteed to converge to the stationary point of the min-max problem. Numerical results show that, compared against the state-of-the-art CI-based algorithms, the proposed algorithm generally achieves better bit-error-rate (BER) performance with lower computational cost.

This paper concerns a convex, stochastic zeroth-order optimization (S-ZOO) problem. The objective is to minimize the expectation of a cost function whose gradient is not directly accessible. For this problem, traditional optimization algorithms mostly yield query complexities that grow polynomially with dimensionality (the number of decision variables). Consequently, these methods may not perform well in solving massive-dimensional problems arising in many modern applications. Although more recent methods can be provably dimension-insensitive, almost all of them require arguably more stringent conditions such as everywhere sparse or compressible gradient. In this paper, we propose a sparsity-inducing stochastic gradient-free (SI-SGF) algorithm, which provably yields a dimension-free (up to a logarithmic term) query complexity in both convex and strongly convex cases. Such insensitivity to the dimensionality growth is proven, for the first time, to be achievable when neither gradient sparsity nor gradient compressibility is satisfied. Our numerical results demonstrate a consistency between our theoretical prediction and the empirical performance.

In this paper we propose a deep learning based numerical scheme for strongly coupled FBSDE, stemming from stochastic control. It is a modification of the deep BSDE method in which the initial value to the backward equation is not a free parameter, and with a new loss function being the weighted sum of the cost of the control problem, and a variance term which coincides with the means square error in the terminal condition. We show by a numerical example that a direct extension of the classical deep BSDE method to FBSDE, fails for a simple linear-quadratic control problem, and motivate why the new method works. Under regularity and boundedness assumptions on the exact controls of time continuous and time discrete control problems we provide an error analysis for our method. We show empirically that the method converges for three different problems, one being the one that failed for a direct extension of the deep BSDE method.

Minimax problems have gained tremendous attentions across the optimization and machine learning community recently. In this paper, we introduce a new quasi-Newton method for minimax problems, which we call $J$-symmetric quasi-Newton method. The method is obtained by exploiting the $J$-symmetric structure of the second-order derivative of the objective function in minimax problem. We show that the Hessian estimation (as well as its inverse) can be updated by a rank-2 operation, and it turns out that the update rule is a natural generalization of the classic Powell symmetric Broyden (PSB) method from minimization problems to minimax problems. In theory, we show that our proposed quasi-Newton algorithm enjoys local Q-superlinear convergence to a desirable solution under standard regularity conditions. Furthermore, we introduce a trust-region variant of the algorithm that enjoys global R-superlinear convergence. Finally, we present numerical experiments that verify our theory and show the effectiveness of our proposed algorithms compared to Broyden's method and the extragradient method on three classes of minimax problems.

Convergence to a saddle point for convex-concave functions has been studied for decades, while recent years has seen a surge of interest in non-convex (zero-sum) smooth games, motivated by their recent wide applications. It remains an intriguing research challenge how local optimal points are defined and which algorithm can converge to such points. An interesting concept is known as the local minimax point, which strongly correlates with the widely-known gradient descent ascent algorithm. This paper aims to provide a comprehensive analysis of local minimax points, such as their relation with other solution concepts and their optimality conditions. We find that local saddle points can be regarded as a special type of local minimax points, called uniformly local minimax points, under mild continuity assumptions. In (non-convex) quadratic games, we show that local minimax points are (in some sense) equivalent to global minimax points. Finally, we study the stability of gradient algorithms near local minimax points. Although gradient algorithms can converge to local/global minimax points in the non-degenerate case, they would often fail in general cases. This implies the necessity of either novel algorithms or concepts beyond saddle points and minimax points in non-convex smooth games.

In this paper, we study the probabilistic stability analysis of a subclass of stochastic hybrid systems, called the Planar Probabilistic Piecewise Constant Derivative Systems (Planar PPCD), where the continuous dynamics is deterministic, constant rate and planar, the discrete switching between the modes is probabilistic and happens at boundary of the invariant regions, and the continuous states are not reset during switching. These aptly model piecewise linear behaviors of planar robots. Our main result is an exact algorithm for deciding absolute and almost sure stability of Planar PPCD under some mild assumptions on mutual reachability between the states and the presence of non-zero probability self-loops. Our main idea is to reduce the stability problems on planar PPCD into corresponding problems on Discrete Time Markov Chains with edge weights. Our experimental results on planar robots with faulty angle actuator demonstrate the practical feasibility of this approach.

This dissertation studies a fundamental open challenge in deep learning theory: why do deep networks generalize well even while being overparameterized, unregularized and fitting the training data to zero error? In the first part of the thesis, we will empirically study how training deep networks via stochastic gradient descent implicitly controls the networks' capacity. Subsequently, to show how this leads to better generalization, we will derive {\em data-dependent} {\em uniform-convergence-based} generalization bounds with improved dependencies on the parameter count. Uniform convergence has in fact been the most widely used tool in deep learning literature, thanks to its simplicity and generality. Given its popularity, in this thesis, we will also take a step back to identify the fundamental limits of uniform convergence as a tool to explain generalization. In particular, we will show that in some example overparameterized settings, {\em any} uniform convergence bound will provide only a vacuous generalization bound. With this realization in mind, in the last part of the thesis, we will change course and introduce an {\em empirical} technique to estimate generalization using unlabeled data. Our technique does not rely on any notion of uniform-convergece-based complexity and is remarkably precise. We will theoretically show why our technique enjoys such precision. We will conclude by discussing how future work could explore novel ways to incorporate distributional assumptions in generalization bounds (such as in the form of unlabeled data) and explore other tools to derive bounds, perhaps by modifying uniform convergence or by developing completely new tools altogether.

This paper studies task adaptive pre-trained model selection, an \emph{underexplored} problem of assessing pre-trained models so that models suitable for the task can be selected from the model zoo without fine-tuning. A pilot work~\cite{nguyen_leep:_2020} addressed the problem in transferring supervised pre-trained models to classification tasks, but it cannot handle emerging unsupervised pre-trained models or regression tasks. In pursuit of a practical assessment method, we propose to estimate the maximum evidence (marginalized likelihood) of labels given features extracted by pre-trained models. The maximum evidence is \emph{less prone to over-fitting} than the likelihood, and its \emph{expensive computation can be dramatically reduced} by our carefully designed algorithm. The Logarithm of Maximum Evidence (LogME) can be used to assess pre-trained models for transfer learning: a pre-trained model with high LogME is likely to have good transfer performance. LogME is fast, accurate, and general, characterizing it as \emph{the first practical assessment method for transfer learning}. Compared to brute-force fine-tuning, LogME brings over $3000\times$ speedup in wall-clock time. It outperforms prior methods by a large margin in their setting and is applicable to new settings that prior methods cannot deal with. It is general enough to diverse pre-trained models (supervised pre-trained and unsupervised pre-trained), downstream tasks (classification and regression), and modalities (vision and language). Code is at \url{//github.com/thuml/LogME}.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

北京阿比特科技有限公司