亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Context: Bug-fix pattern detection has been investigated in the past in the context of classical software. However, while quantum software is developing rapidly, the literature still lacks automated methods and tools to identify, analyze, and detect bug-fix patterns. To the best of our knowledge, our work previously published in SEKE'23 was the first to leverage classical techniques to detect bug-fix patterns in quantum code. Objective: To extend our previous effort, we present a research agenda (Q-Repair), including a series of testing and debugging methodologies, to improve the quality of quantum software. The ultimate goal is to utilize machine learning techniques to automatically predict fix patterns for existing quantum bugs. Method: As part of the first stage of the agenda, we extend our initial study and propose a more comprehensive automated framework, called Q-PAC, for detecting bug-fix patterns in IBM Qiskit quantum code. In the framework, we develop seven bug-fix pattern detectors using abstract syntax trees, syntactic filters, and semantic checks. Results: To demonstrate our method, we run Q-PAC on a variety of quantum bug-fix patterns using both real-world and handcrafted examples of bugs and fixes. The experimental results show that Q-PAC can effectively identify bug-fix patterns in IBM Qiskit. Conclusion: We hope our initial study on quantum bug-fix detection can bring awareness of quantum software engineering to both researchers and practitioners. Thus, we also publish Q-PAC as an open-source software on GitHub. We would like to encourage other researchers to work on research directions (such as Q-Repair) to improve the quality of the quantum programming.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Symmetries of input and latent vectors have provided valuable insights for disentanglement learning in VAEs.However, only a few works were proposed as an unsupervised method, and even these works require known factor information in training data. We propose a novel method, Composite Factor-Aligned Symmetry Learning (CFASL), which is integrated into VAEs for learning symmetry-based disentanglement in unsupervised learning without any knowledge of the dataset factor information.CFASL incorporates three novel features for learning symmetry-based disentanglement: 1) Injecting inductive bias to align latent vector dimensions to factor-aligned symmetries within an explicit learnable symmetry codebook 2) Learning a composite symmetry to express unknown factors change between two random samples by learning factor-aligned symmetries within the codebook 3) Inducing group equivariant encoder and decoder in training VAEs with the two conditions. In addition, we propose an extended evaluation metric for multi-factor changes in comparison to disentanglement evaluation in VAEs. In quantitative and in-depth qualitative analysis, CFASL demonstrates a significant improvement of disentanglement in single-factor change, and multi-factor change conditions compared to state-of-the-art methods.

We investigate to which extent open large language models (LLMs) can generate coherent and relevant text from structured data. To prevent bias from benchmarks leaked into LLM training data, we collect Quintd-1: an ad-hoc benchmark for five data-to-text (D2T) generation tasks, consisting of structured data records in standard formats gathered from public APIs. We leverage reference-free evaluation metrics and LLMs' in-context learning capabilities, allowing us to test the models with no human-written references. Our evaluation focuses on annotating semantic accuracy errors on token-level, combining human annotators and a metric based on GPT-4. Our systematic examination of the models' behavior across domains and tasks suggests that state-of-the-art open LLMs with 7B parameters can generate fluent and coherent text from various standard data formats in zero-shot settings. However, we also show that semantic accuracy of the outputs remains a major issue: on our benchmark, 80% of outputs of open LLMs contain a semantic error according to human annotators (91% according to GPT-4). Our code, data, and model outputs are available at //d2t-llm.github.io.

Recently, in-memory analog matrix computing (AMC) with nonvolatile resistive memory has been developed for solving matrix problems in one step, e.g., matrix inversion of solving linear systems. However, the analog nature sets up a barrier to the scalability of AMC, due to the limits on the manufacturability and yield of resistive memory arrays, non-idealities of device and circuit, and cost of hardware implementations. Aiming to deliver a scalable AMC approach for solving linear systems, this work presents BlockAMC, which partitions a large original matrix into smaller ones on different memory arrays. A macro is designed to perform matrix inversion and matrix-vector multiplication with the block matrices, obtaining the partial solutions to recover the original solution. The size of block matrices can be exponentially reduced by performing multiple stages of divide-and-conquer, resulting in a two-stage solver design that enhances the scalability of this approach. BlockAMC is also advantageous in alleviating the accuracy issue of AMC, especially in the presence of device and circuit non-idealities, such as conductance variations and interconnect resistances. Compared to a single AMC circuit solving the same problem, BlockAMC improves the area and energy efficiency by 48.83% and 40%, respectively.

People routinely rely on data to make decisions, but the process can be riddled with biases. We show that patterns in data might be noticed first or more strongly, depending on how the data is visually represented or what the viewer finds salient. We also demonstrate that viewer interpretation of data is similar to that of 'ambiguous figures' such that two people looking at the same data can come to different decisions. In our studies, participants read visualizations depicting competitions between two entities, where one has a historical lead (A) but the other has been gaining momentum (B) and predicted a winner, across two chart types and three annotation approaches. They either saw the historical lead as salient and predicted that A would win, or saw the increasing momentum as salient and predicted B to win. These results suggest that decisions can be influenced by both how data are presented and what patterns people find visually salient.

With the development of artificial intelligence, large-scale models have become increasingly intelligent. However, numerous studies indicate that hallucinations within these large models are a bottleneck hindering the development of AI research. In the pursuit of achieving strong artificial intelligence, a significant volume of research effort is being invested in the AGI (Artificial General Intelligence) hallucination research. Previous explorations have been conducted in researching hallucinations within LLMs (Large Language Models). As for multimodal AGI, research on hallucinations is still in an early stage. To further the progress of research in the domain of hallucinatory phenomena, we present a bird's eye view of hallucinations in AGI, summarizing the current work on AGI hallucinations and proposing some directions for future research.

We present a comprehensive, user-centric approach to understand preferences in AI-based productivity agents and develop personalized solutions tailored to users' needs. Utilizing a two-phase method, we first conducted a survey with 363 participants, exploring various aspects of productivity, communication style, agent approach, personality traits, personalization, and privacy. Drawing on the survey insights, we developed a GPT-4 powered personalized productivity agent that utilizes telemetry data gathered via Viva Insights from information workers to provide tailored assistance. We compared its performance with alternative productivity-assistive tools, such as dashboard and narrative, in a study involving 40 participants. Our findings highlight the importance of user-centric design, adaptability, and the balance between personalization and privacy in AI-assisted productivity tools. By building on the insights distilled from our study, we believe that our work can enable and guide future research to further enhance productivity solutions, ultimately leading to optimized efficiency and user experiences for information workers.

Serverless computing relieves developers from the burden of resource management, thus providing ease-of-use to the users and the opportunity to optimize resource utilization for the providers. However, today's serverless systems lack performance guarantees for function invocations, thus limiting support for performance-critical applications: we observed severe performance variability (up to 6x). Providers lack visibility into user functions and hence find it challenging to right-size them: we observed heavy resource underutilization (up to 80%). To understand the causes behind the performance variability and underutilization, we conducted a measurement study of commonly deployed serverless functions and learned that the function performance and resource utilization depend crucially on function semantics and inputs. Our key insight is to delay making resource allocation decisions until after the function inputs are available. We introduce Shabari, a resource management framework for serverless systems that makes decisions as late as possible to right-size each invocation to meet functions' performance objectives (SLOs) and improve resource utilization. Shabari uses an online learning agent to right-size each function invocation based on the features of the function input and makes cold-start-aware scheduling decisions. For a range of serverless functions and inputs, Shabari reduces SLO violations by 11-73% while not wasting any vCPUs and reducing wasted memory by 64-94% in the median case, compared to state-of-the-art systems, including Aquatope, Parrotfish, and Cypress.

Anomaly detection is a challenging task for machine learning algorithms due to the inherent class imbalance. It is costly and time-demanding to manually analyse the observed data, thus usually only few known anomalies if any are available. Inspired by generative models and the analysis of the hidden activations of neural networks, we introduce a novel unsupervised anomaly detection method called DA3D. Here, we use adversarial autoencoders to generate anomalous counterexamples based on the normal data only. These artificial anomalies used during training allow the detection of real, yet unseen anomalies. With our novel generative approach, we transform the unsupervised task of anomaly detection to a supervised one, which is more tractable by machine learning and especially deep learning methods. DA3D surpasses the performance of state-of-the-art anomaly detection methods in a purely data-driven way, where no domain knowledge is required.

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

北京阿比特科技有限公司