亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Motivated by applications in DNA-based storage, we study explicit encoding and decoding schemes of binary strings satisfying locally balanced constraints, where the $(\ell,\delta)$-locally balanced constraint requires that the weight of any consecutive substring of length $\ell$ is between $\frac{\ell}{2}-\delta$ and $\frac{\ell}{2}+\delta$. In this paper we present coding schemes for the strongly locally balanced constraints and the locally balanced constraints, respectively. Moreover, we introduce an additional result on the linear recurrence formula of the number of binary strings which are $(6,1)$-locally balanced, as a further attempt to both capacity characterization and new coding strategies for locally balanced constraints.

相關內容

The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where degree intervals are specified rather than a single degree sequence. (A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed.) Rechner, Strowick, and M\"uller-Hannemann introduced in 2018 the notion of degree interval Markov chain which uses three (separately well-studied) local operations (switch, hinge-flip and toggle), and employing on degree sequence realizations where any two sequences under scrutiny have very small coordinate-wise distance. Recently Amanatidis and Kleer published a beautiful paper (arXiv:2110.09068), showing that the degree interval Markov chain is rapidly mixing if the sequences are coming from a system of very thin intervals which are centered not far from a regular degree sequence. In this paper we extend substantially their result, showing that the degree interval Markov chain is rapidly mixing if the intervals are centred at P-stable degree sequences.

We propose a new sheaf semantics for secure information flow over a space of abstract behaviors, based on synthetic domain theory: security classes are open/closed partitions, types are sheaves, and redaction of sensitive information corresponds to restricting a sheaf to a closed subspace. Our security-aware computational model satisfies termination-insensitive noninterference automatically, and therefore constitutes an intrinsic alternative to state of the art extrinsic/relational models of noninterference. Our semantics is the latest application of Sterling and Harper's recent re-interpretation of phase distinctions and noninterference in programming languages in terms of Artin gluing and topos-theoretic open/closed modalities. Prior applications include parametricity for ML modules, the proof of normalization for cubical type theory by Sterling and Angiuli, and the cost-aware logical framework of Niu et al. In this paper we employ the phase distinction perspective twice: first to reconstruct the syntax and semantics of secure information flow as a lattice of phase distinctions between "higher" and "lower" security, and second to verify the computational adequacy of our sheaf semantics vis-\`a-vis an extension of Abadi et al.'s dependency core calculus with a construct for declassifying termination channels.

Escaping from saddle points and finding local minimum is a central problem in nonconvex optimization. Perturbed gradient methods are perhaps the simplest approach for this problem. However, to find $(\epsilon, \sqrt{\epsilon})$-approximate local minima, the existing best stochastic gradient complexity for this type of algorithms is $\tilde O(\epsilon^{-3.5})$, which is not optimal. In this paper, we propose LENA (Last stEp shriNkAge), a faster perturbed stochastic gradient framework for finding local minima. We show that LENA with stochastic gradient estimators such as SARAH/SPIDER and STORM can find $(\epsilon, \epsilon_{H})$-approximate local minima within $\tilde O(\epsilon^{-3} + \epsilon_{H}^{-6})$ stochastic gradient evaluations (or $\tilde O(\epsilon^{-3})$ when $\epsilon_H = \sqrt{\epsilon}$). The core idea of our framework is a step-size shrinkage scheme to control the average movement of the iterates, which leads to faster convergence to the local minima.

Many existing algorithms for streaming geometric data analysis have been plagued by exponential dependencies in the space complexity, which are undesirable for processing high-dimensional data sets. In particular, once $d\geq\log n$, there are no known non-trivial streaming algorithms for problems such as maintaining convex hulls and L\"owner-John ellipsoids of $n$ points, despite a long line of work in streaming computational geometry since [AHV04]. We simultaneously improve these results to $\mathrm{poly}(d,\log n)$ bits of space by trading off with a $\mathrm{poly}(d,\log n)$ factor distortion. We achieve these results in a unified manner, by designing the first streaming algorithm for maintaining a coreset for $\ell_\infty$ subspace embeddings with $\mathrm{poly}(d,\log n)$ space and $\mathrm{poly}(d,\log n)$ distortion. Our algorithm also gives similar guarantees in the \emph{online coreset} model. Along the way, we sharpen results for online numerical linear algebra by replacing a log condition number dependence with a $\log n$ dependence, answering a question of [BDM+20]. Our techniques provide a novel connection between leverage scores, a fundamental object in numerical linear algebra, and computational geometry. For $\ell_p$ subspace embeddings, we give nearly optimal trade-offs between space and distortion for one-pass streaming algorithms. For instance, we give a deterministic coreset using $O(d^2\log n)$ space and $O((d\log n)^{1/2-1/p})$ distortion for $p>2$, whereas previous deterministic algorithms incurred a $\mathrm{poly}(n)$ factor in the space or the distortion [CDW18]. Our techniques have implications in the offline setting, where we give optimal trade-offs between the space complexity and distortion of subspace sketch data structures. To do this, we give an elementary proof of a "change of density" theorem of [LT80] and make it algorithmic.

Many mathematical objects can be represented as functors from finitely-presented categories $\mathsf{C}$ to $\mathsf{Set}$. For instance, graphs are functors to $\mathsf{Set}$ from the category with two parallel arrows. Such functors are known informally as $\mathsf{C}$-sets. In this paper, we describe and implement an extension of $\mathsf{C}$-sets having data attributes with fixed types, such as graphs with labeled vertices or real-valued edge weights. We call such structures "acsets," short for "attributed $\mathsf{C}$-sets." Derived from previous work on algebraic databases, acsets are a joint generalization of graphs and data frames. They also encompass more elaborate graph-like objects such as wiring diagrams and Petri nets with rate constants. We develop the mathematical theory of acsets and then describe a generic implementation in the Julia programming language, which uses advanced language features to achieve performance comparable with specialized data structures.

In this paper we study the finite sample and asymptotic properties of various weighting estimators of the local average treatment effect (LATE), several of which are based on Abadie (2003)'s kappa theorem. Our framework presumes a binary endogenous explanatory variable ("treatment") and a binary instrumental variable, which may only be valid after conditioning on additional covariates. We argue that one of the Abadie estimators, which we show is weight normalized, is likely to dominate the others in many contexts. A notable exception is in settings with one-sided noncompliance, where certain unnormalized estimators have the advantage of being based on a denominator that is bounded away from zero. We use a simulation study and three empirical applications to illustrate our findings. In applications to causal effects of college education using the college proximity instrument (Card, 1995) and causal effects of childbearing using the sibling sex composition instrument (Angrist and Evans, 1998), the unnormalized estimates are clearly unreasonable, with "incorrect" signs, magnitudes, or both. Overall, our results suggest that (i) the relative performance of different kappa weighting estimators varies with features of the data-generating process; and that (ii) the normalized version of Tan (2006)'s estimator may be an attractive alternative in many contexts. Applied researchers with access to a binary instrumental variable should also consider covariate balancing or doubly robust estimators of the LATE.

The lossless compression of a single source $X^n$ was recently shown to be achievable with a notion of strong locality; any $X_i$ can be decoded from a {\emph{constant}} number of compressed bits, with a vanishing in $n$ probability of error. In contrast with the single source setup, we show that for two separately encoded sources $(X^n,Y^n)$, lossless compression and strong locality is generally not possible. More precisely, we show that for the class of "confusable" sources strong locality cannot be achieved whenever one of the sources is compressed below its entropy. In this case, irrespectively of $n$, the probability of error of decoding any $(X_i,Y_i)$ is lower bounded by $2^{-O(d_{\mathrm{loc}})}$, where $d_{\mathrm{loc}}$ denotes the number of compressed bits accessed by the local decoder. Conversely, if the source is not confusable, strong locality is possible even if one of the sources is compressed below its entropy. Results extend to any number of sources.

In this work, we develop quantization and variable-length source codecs for the feedback links in linear-quadratic-Gaussian (LQG) control systems. We prove that for any fixed control performance, the approaches we propose nearly achieve lower bounds on communication cost that have been established in prior work. In particular, we refine the analysis of a classical achievability approach with an eye towards more practical details. Notably, in the prior literature the source codecs used to demonstrate the (near) achievability of these lower bounds are often implicitly assumed to be time-varying. For single-input single-output (SISO) plants, we prove that it suffices to consider time-invariant quantization and source coding. This result follows from analyzing the long-term stochastic behavior of the system's quantized measurements and reconstruction errors. To our knowledge, this time-invariant achievability result is the first in the literature.

Universal coding of integers~(UCI) is a class of variable-length code, such that the ratio of the expected codeword length to $\max\{1,H(P)\}$ is within a constant factor, where $H(P)$ is the Shannon entropy of the decreasing probability distribution $P$. However, if we consider the ratio of the expected codeword length to $H(P)$, the ratio tends to infinity by using UCI, when $H(P)$ tends to zero. To solve this issue, this paper introduces a class of codes, termed generalized universal coding of integers~(GUCI), such that the ratio of the expected codeword length to $H(P)$ is within a constant factor $K$. First, the definition of GUCI is proposed and the coding structure of GUCI is introduced. Next, we propose a class of GUCI $\mathcal{C}$ to achieve the expansion factor $K_{\mathcal{C}}=2$ and show that the optimal GUCI is in the range $1\leq K_{\mathcal{C}}^{*}\leq 2$. Then, by comparing UCI and GUCI, we show that when the entropy is very large or $P(0)$ is not large, there are also cases where the average codeword length of GUCI is shorter. Finally, the asymptotically optimal GUCI is presented.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司