亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

$ \renewcommand{\tilde}{\widetilde} $We present an $\tilde{O}(\log^2 n)$ round deterministic distributed algorithm for the maximal independent set problem. By known reductions, this round complexity extends also to maximal matching, $\Delta+1$ vertex coloring, and $2\Delta-1$ edge coloring. These four problems are among the most central problems in distributed graph algorithms and have been studied extensively for the past four decades. This improved round complexity comes closer to the $\tilde{\Omega}(\log n)$ lower bound of maximal independent set and maximal matching [Balliu et al. FOCS '19]. The previous best known deterministic complexity for all of these problems was $\Theta(\log^3 n)$. Via the shattering technique, the improvement permeates also to the corresponding randomized complexities, e.g., the new randomized complexity of $\Delta+1$ vertex coloring is now $\tilde{O}(\log^2\log n)$ rounds. Our approach is a novel combination of the previously known two methods for developing deterministic algorithms for these problems, namely global derandomization via network decomposition (see e.g., [Rozhon, Ghaffari STOC'20; Ghaffari, Grunau, Rozhon SODA'21; Ghaffari et al. SODA'23]) and local rounding of fractional solutions (see e.g., [Fischer DISC'17; Harris FOCS'19; Fischer, Ghaffari, Kuhn FOCS'17; Ghaffari, Kuhn FOCS'21; Faour et al. SODA'23]). We consider a relaxation of the classic network decomposition concept, where instead of requiring the clusters in the same block to be non-adjacent, we allow each node to have a small number of neighboring clusters. We also show a deterministic algorithm that computes this relaxed decomposition faster than standard decompositions. We then use this relaxed decomposition to significantly improve the integrality of certain fractional solutions, before handing them to the local rounding procedure that now has to do fewer rounding steps.

相關內容

IEEE計算機科學基礎研討會(FOCS)是由IEEE計算機學會計算數學基礎技術委員會(TCMF)主辦的旗艦會議,涵蓋了廣泛的理論計算機科學。它每年秋季舉行,并與每年春季舉行的由ACM SIGACT贊助的姊妹會議——計算理論年度研討會(STOC)配對。官網鏈接: · · 無限 · 類別 · ReQuEST ·
2023 年 5 月 18 日

We study the parameterized complexity of MinCSP for so-called equality languages, i.e., for finite languages over an infinite domain such as $\mathbb{N}$, where the relations are defined via first-order formulas whose only predicate is $=$. This is an important class of languages that forms the starting point of all study of infinite-domain CSPs under the commonly used approach pioneered by Bodirsky, i.e., languages defined as reducts of finitely bounded homogeneous structures. Moreover, MinCSP over equality languages forms a natural class of optimisation problems in its own right, covering such problems as Edge Multicut, Steiner Multicut and (under singleton expansion) Edge Multiway Cut. We classify MinCSP$(\Gamma)$ for every finite equality language $\Gamma$, under the natural parameter, as either FPT, W[1]-hard but admitting a constant-factor FPT-approximation, or not admitting a constant-factor FPT-approximation unless FPT=W[2]. In particular, we describe an FPT case that slightly generalises Multicut, and show a constant-factor FPT-approximation for Disjunctive Multicut, the generalisation of Multicut where the ``cut requests'' come as disjunctions over $d = O(1)$ individual cut requests $s_i \neq t_i$. We also consider singleton expansions of equality languages, i.e., enriching an equality language with the capability for assignment constraints $(x=i)$ for either finitely or infinitely many constants $i \in \mathbb{N}$, and fully characterize the complexity of the resulting MinCSP.

Moment restrictions and their conditional counterparts emerge in many areas of machine learning and statistics ranging from causal inference to reinforcement learning. Estimators for these tasks, generally called methods of moments, include the prominent generalized method of moments (GMM) which has recently gained attention in causal inference. GMM is a special case of the broader family of empirical likelihood estimators which are based on approximating a population distribution by means of minimizing a $\varphi$-divergence to an empirical distribution. However, the use of $\varphi$-divergences effectively limits the candidate distributions to reweightings of the data samples. We lift this long-standing limitation and provide a method of moments that goes beyond data reweighting. This is achieved by defining an empirical likelihood estimator based on maximum mean discrepancy which we term the kernel method of moments (KMM). We provide a variant of our estimator for conditional moment restrictions and show that it is asymptotically first-order optimal for such problems. Finally, we show that our method achieves competitive performance on several conditional moment restriction tasks.

Approximation fixpoint theory (AFT) is an abstract and general algebraic framework for studying the semantics of non-monotonic logics. In recent work, AFT was generalized to non-deterministic operators, i.e.\ operators whose range are sets of elements rather than single elements. In this paper, we make three further contributions to non-deterministic AFT: (1) we define and study ultimate approximations of non-deterministic operators, (2) we give an algebraic formulation of the semi-equilibrium semantics by Amendola, et al., and (3) we generalize the characterisations of disjunctive logic programs to disjunctive logic programs with aggregates.

A linear inference is a valid inequality of Boolean algebra in which each variable occurs at most once on each side. In this work we leverage recently developed graphical representations of linear formulae to build an implementation that is capable of more efficiently searching for switch-medial-independent inferences. We use it to find four `minimal' 8-variable independent inferences and also prove that no smaller ones exist; in contrast, a previous approach based directly on formulae reached computational limits already at 7 variables. Two of these new inferences derive some previously found independent linear inferences. The other two (which are dual) exhibit structure seemingly beyond the scope of previous approaches we are aware of; in particular, their existence contradicts a conjecture of Das and Strassburger. We were also able to identify 10 minimal 9-variable linear inferences independent of all the aforementioned inferences, comprising 5 dual pairs, and present applications of our implementation to recent `graph logics'.

We survey recent progress on efficient algorithms for approximately diagonalizing a square complex matrix in the models of rational (variable precision) and finite (floating point) arithmetic. This question has been studied across several research communities for decades, but many mysteries remain. We present several open problems which we hope will be of broad interest.

The maximum weighted matching (MWM) problem is one of the most well-studied combinatorial optimization problems in distributed graph algorithms. Despite a long development on the problem, and the recent progress of Fischer, Mitrovic, and Uitto [FMU22] who gave a $\text{poly}(1/\epsilon, \log n)$-round algorithm for obtaining a $(1-\epsilon)$-approximate solution for unweighted maximum matching, it had been an open problem whether a $(1-\epsilon)$-approximate MWM can be obtained in $\text{poly}(1/\epsilon, \log n)$ rounds in the CONGEST model. Algorithms with such running times were only known for special graph classes such as bipartite graphs [AKO18] and minor-free graphs [CS22]. For general graphs, the previously known algorithms require exponential in $(1/\epsilon)$ rounds for obtaining a $(1-\epsilon)$-approximate solution [FFK21] or achieve an approximation factor of at most 2/3 [AKO18]. In this work, we settle this open problem by giving a deterministic $\text{poly}(1/\epsilon, \log n)$-round algorithm for computing a $(1-\epsilon)$-approximate MWM for general graphs in the CONGEST model. Our proposed solution extends the algorithm of Fischer, Mitrovic, and Uitto [FMU22], blends in the sequential algorithm from Duan and Pettie [DP14] and the work of Faour, Fuchs, and Kuhn [FFK21]. Interestingly, this solution also implies a CREW PRAM algorithm with $\text{poly}(1/\epsilon, \log n)$ span using only $O(m)$ processors. In addition, with the reduction from Gupta and Peng [GP13], we further obtain a semi-streaming algorithm with $\text{poly}(1/\epsilon)$ passes. When $\epsilon$ is smaller than a constant $o(1)$ but at least $1/\log^{o(1)} n$, our algorithm is more efficient than both Ahn and Guha's $\text{poly}(1/\epsilon, \log n)$-passes algorithm [AG13] and Gamlath, Kale, Mitrovic, and Svensson's $(1/\epsilon)^{O(1/\epsilon^2)}$-passes algorithm [GKMS19].

The approximate stabilizer rank of a quantum state is the minimum number of terms in any approximate decomposition of that state into stabilizer states. Bravyi and Gosset showed that the approximate stabilizer rank of a so-called "magic" state like $|T\rangle^{\otimes n}$, up to polynomial factors, is an upper bound on the number of classical operations required to simulate an arbitrary quantum circuit with Clifford gates and $n$ number of $T$ gates. As a result, an exponential lower bound on this quantity seems inevitable. Despite this intuition, several attempts using various techniques could not lead to a better than a linear lower bound on the "exact" rank of $|T\rangle^{\otimes n}$, meaning the minimal size of a decomposition that exactly produces the state. However, an "approximate" rank is more realistically related to the cost of simulating quantum circuits because exact rank is not robust to errors; there are quantum states with exponentially large exact ranks but constant approximate ranks even with arbitrarily small approximation parameters. No lower bound better than $\tilde \Omega(\sqrt n)$ has been known for the approximate rank. In this paper, we improve this lower bound to $\tilde \Omega (n)$ for a wide range of the approximation parameters. Our approach is based on a strong lower bound on the approximate rank of a quantum state sampled from the Haar measure and a step-by-step analysis of the approximate rank of a magic-state teleportation protocol to sample from the Haar measure.

We study the problem of combining neural networks with symbolic reasoning. Recently introduced frameworks for Probabilistic Neurosymbolic Learning (PNL), such as DeepProbLog, perform exponential-time exact inference, limiting the scalability of PNL solutions. We introduce Approximate Neurosymbolic Inference (A-NeSI): a new framework for PNL that uses neural networks for scalable approximate inference. A-NeSI 1) performs approximate inference in polynomial time without changing the semantics of probabilistic logics; 2) is trained using data generated by the background knowledge; 3) can generate symbolic explanations of predictions; and 4) can guarantee the satisfaction of logical constraints at test time, which is vital in safety-critical applications. Our experiments show that A-NeSI is the first end-to-end method to solve three neurosymbolic tasks with exponential combinatorial scaling. Finally, our experiments show that A-NeSI achieves explainability and safety without a penalty in performance.

This study proposes a hybrid deep-learning-metaheuristic framework with a bi-level architecture for road network design problems (NDPs). We train a graph neural network (GNN) to approximate the solution of the user equilibrium (UE) traffic assignment problem, and use inferences made by the trained model to calculate fitness function evaluations of a genetic algorithm (GA) to approximate solutions for NDPs. Using two NDP variants and an exact solver as benchmark, we show that our proposed framework can provide solutions within 5% gap of the global optimum results given less than 1% of the time required for finding the optimal results. Our framework can be utilized within an expert system for infrastructure planning to intelligently determine the best infrastructure management decisions. Given the flexibility of the framework, it can easily be adapted to many other decision problems that can be modeled as bi-level problems on graphs. Moreover, we observe many interesting future directions, thus we propose a brief research agenda for this topic. The key observation inspiring influential future research was that fitness function evaluation time using the inferences made by the GNN model for the genetic algorithm was in the order of milliseconds, which points to an opportunity and a need for novel heuristics that 1) can cope well with noisy fitness function values provided by neural networks, and 2) can use the significantly higher computation time provided to them to explore the search space effectively (rather than efficiently). This opens a new avenue for a modern class of metaheuristics that are crafted for use with AI-powered predictors.

Many variations of the classical graph coloring model have been intensively studied due to their multiple applications; scheduling problems and aircraft assignments, for instance, motivate the robust coloring problem. This model gets to capture natural constraints of those optimization problems by combining the information provided by two colorings: a vertex coloring of a graph and the induced edge coloring on a subgraph of its complement; the goal is to minimize, among all proper colorings of the graph for a fixed number of colors, the number of edges in the subgraph with the endpoints of the same color. The study of the robust coloring model has been focused on the search for heuristics due to its NP-hard character when using at least three colors, but little progress has been made in other directions. We present a new approach on the problem obtaining the first collection of non-heuristic results for general graphs; among them, we prove that robust coloring is the model that better approaches the equitable partition of the vertex set, even when the graph does not admit a so-called \emph{equitable coloring}. We also show the NP-completeness of its decision problem for the unsolved case of two colors, obtain bounds on the associated robust coloring parameter, and solve a conjecture on paths that illustrates the complexity of studying this coloring model.

北京阿比特科技有限公司