亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this article, we propose an approach for federated domain adaptation, a setting where distributional shift exists among clients and some have unlabeled data. The proposed framework, FedDaDiL, tackles the resulting challenge through dictionary learning of empirical distributions. In our setting, clients' distributions represent particular domains, and FedDaDiL collectively trains a federated dictionary of empirical distributions. In particular, we build upon the Dataset Dictionary Learning framework by designing collaborative communication protocols and aggregation operations. The chosen protocols keep clients' data private, thus enhancing overall privacy compared to its centralized counterpart. We empirically demonstrate that our approach successfully generates labeled data on the target domain with extensive experiments on (i) Caltech-Office, (ii) TEP, and (iii) CWRU benchmarks. Furthermore, we compare our method to its centralized counterpart and other benchmarks in federated domain adaptation.

相關內容

稀疏表達的(de)(de)效(xiao)果好壞和用的(de)(de)字典(dian)有(you)著密切的(de)(de)關系。字典(dian)分兩類,一種(zhong)(zhong)是預(yu)先給(gei)定的(de)(de)分析(xi)字典(dian),比如小波(bo)基、DCT等,另一種(zhong)(zhong)則是針對特(te)定數據(ju)集(ji)學習出特(te)定的(de)(de)字典(dian)。這種(zhong)(zhong)學出來的(de)(de)字典(dian)能(neng)大大提升(sheng)在特(te)定數據(ju)集(ji)的(de)(de)效(xiao)果。

In this article, we present a mechanism and related path planning algorithm to construct light-duty barriers out of extruded, inflated tubes weaved around existing environmental features. Our extruded tubes are based on everted vine-robots and in this context, we present a new method to steer their growth. We characterize the mechanism in terms of accuracy resilience, and, towards their use as barriers, the ability of the tubes to withstand distributed loads. We further explore an algorithm which, given a feature map and the size and direction of the external load, can determine where and how to extrude the barrier. Finally, we showcase the potential of this method in an autonomously extruded two-layer wall weaved around three pipes. While preliminary, our work indicates that this method has the potential for barrier construction in cluttered environments, e.g. shelters against wind or snow. Future work may show how to achieve tighter weaves, how to leverage weave friction for improved strength, how to assess barrier performance for feedback control, and how to operate the extrusion mechanism off of a mobile robot.

In recent years, concept-based approaches have emerged as some of the most promising explainability methods to help us interpret the decisions of Artificial Neural Networks (ANNs). These methods seek to discover intelligible visual 'concepts' buried within the complex patterns of ANN activations in two key steps: (1) concept extraction followed by (2) importance estimation. While these two steps are shared across methods, they all differ in their specific implementations. Here, we introduce a unifying theoretical framework that comprehensively defines and clarifies these two steps. This framework offers several advantages as it allows us: (i) to propose new evaluation metrics for comparing different concept extraction approaches; (ii) to leverage modern attribution methods and evaluation metrics to extend and systematically evaluate state-of-the-art concept-based approaches and importance estimation techniques; (iii) to derive theoretical guarantees regarding the optimality of such methods. We further leverage our framework to try to tackle a crucial question in explainability: how to efficiently identify clusters of data points that are classified based on a similar shared strategy. To illustrate these findings and to highlight the main strategies of a model, we introduce a visual representation called the strategic cluster graph. Finally, we present //serre-lab.github.io/Lens, a dedicated website that offers a complete compilation of these visualizations for all classes of the ImageNet dataset.

We present an oracle-efficient relaxation for the adversarial contextual bandits problem, where the contexts are sequentially drawn i.i.d from a known distribution and the cost sequence is chosen by an online adversary. Our algorithm has a regret bound of $O(T^{\frac{2}{3}}(K\log(|\Pi|))^{\frac{1}{3}})$ and makes at most $O(K)$ calls per round to an offline optimization oracle, where $K$ denotes the number of actions, $T$ denotes the number of rounds and $\Pi$ denotes the set of policies. This is the first result to improve the prior best bound of $O((TK)^{\frac{2}{3}}(\log(|\Pi|))^{\frac{1}{3}})$ as obtained by Syrgkanis et al. at NeurIPS 2016, and the first to match the original bound of Langford and Zhang at NeurIPS 2007 which was obtained for the stochastic case.

In this paper, we propose a novel text promptable surgical instrument segmentation approach to overcome challenges associated with diversity and differentiation of surgical instruments in minimally invasive surgeries. We redefine the task as text promptable, thereby enabling a more nuanced comprehension of surgical instruments and adaptability to new instrument types. Inspired by recent advancements in vision-language models, we leverage pretrained image and text encoders as our model backbone and design a text promptable mask decoder consisting of attention- and convolution-based prompting schemes for surgical instrument segmentation prediction. Our model leverages multiple text prompts for each surgical instrument through a new mixture of prompts mechanism, resulting in enhanced segmentation performance. Additionally, we introduce a hard instrument area reinforcement module to improve image feature comprehension and segmentation precision. Extensive experiments on several surgical instrument segmentation datasets demonstrate our model's superior performance and promising generalization capability. To our knowledge, this is the first implementation of a promptable approach to surgical instrument segmentation, offering significant potential for practical application in the field of robotic-assisted surgery.

In this work, we introduce an iterative decoupled algorithm designed for addressing the quasi-static multiple-network poroelasticity problem. This problem pertains to the simultaneous modeling of fluid flow and deformations within an elastic porous medium permeated by multiple fluid networks, each with distinct characteristics. Our approach focuses on the total-pressure-based formulation, which treats the solid displacement, total pressure, and network pressures as primary unknowns. This formulation transforms the original problem into a combination of the generalized Stokes problem and the parabolic problem, offering certain advantages such as mitigating elastic locking effects and streamlining the discretization process. Notably, the algorithm ensures unconditional convergence to the solution of the total-pressure-based coupled algorithm. To validate the accuracy and efficiency of our method, we present numerical experiments. The robustness of the algorithm with respect to the physical parameters and the discretization parameters is carefully investigated.

In this article, we propose using network-based sampling strategies to estimate the number of unsheltered people experiencing homelessness within a given administrative service unit, known as a Continuum of Care. We demonstrate the effectiveness of network sampling methods to solve this problem. Here, we focus on Respondent Driven Sampling (RDS), which has been shown to provide unbiased or low-biased estimates of totals and proportions for hard-to-reach populations in contexts where a sampling frame (e.g., housing addresses) is not available. To make the RDS estimator work for estimating the total number of people living unsheltered, we introduce a new method that leverages administrative data from the HUD-mandated Homeless Management Information System (HMIS). The HMIS provides high-quality counts and demographics for people experiencing homelessness who sleep in emergency shelters. We then demonstrate this method using network data collected in Nashville, TN, combined with simulation methods to illustrate the efficacy of this approach and introduce a method for performing a power analysis to find the optimal sample size in this setting. We conclude with the RDS unsheltered PIT count conducted by King County Regional Homelessness Authority in 2022 (data publicly available on the HUD website) and perform a comparative analysis between the 2022 RDS estimate of unsheltered people experiencing homelessness and an ARIMA forecast of the visual unsheltered PIT count. Finally, we discuss how this method works for estimating the unsheltered population of people experiencing homelessness and future areas of research.

Many real-world domains require safe decision making in uncertain environments. In this work, we introduce a deep reinforcement learning framework for approaching this important problem. We consider a distribution over transition models, and apply a risk-averse perspective towards model uncertainty through the use of coherent distortion risk measures. We provide robustness guarantees for this framework by showing it is equivalent to a specific class of distributionally robust safe reinforcement learning problems. Unlike existing approaches to robustness in deep reinforcement learning, however, our formulation does not involve minimax optimization. This leads to an efficient, model-free implementation of our approach that only requires standard data collection from a single training environment. In experiments on continuous control tasks with safety constraints, we demonstrate that our framework produces robust performance and safety at deployment time across a range of perturbed test environments.

In this paper, we study a spline collocation method for a numerical solution to the optimal transport problem We mainly solve the \MAE with the second boundary condition numerically by proposing a center matching algorithm. We prove a pointwise convergence of our iterative algorithm under the assumption the boundedness of spline iterates. We use the \MAE with Dirichlet boundary condition and some known solutions to the \MAE with second boundary condition to demonstrate the effectiveness of our algorithm. Then we use our method to solve some real-life problems. One application problem is to use the optimal transportation for the conversion of fisheye view images into standard rectangular images.

Invariant approaches have been remarkably successful in tackling the problem of domain generalization, where the objective is to perform inference on data distributions different from those used in training. In our work, we investigate whether it is possible to leverage domain information from the unseen test samples themselves. We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model, that takes both the input as well as its domain into account while making predictions. For unseen domains, our method simply uses few unlabelled test examples to construct the domain embedding. This enables adaptive classification on any unseen domain. Our approach achieves state-of-the-art performance on various domain generalization benchmarks. In addition, we introduce the first real-world, large-scale domain generalization benchmark, Geo-YFCC, containing 1.1M samples over 40 training, 7 validation, and 15 test domains, orders of magnitude larger than prior work. We show that the existing approaches either do not scale to this dataset or underperform compared to the simple baseline of training a model on the union of data from all training domains. In contrast, our approach achieves a significant improvement.

Recently, neural networks have been widely used in e-commerce recommender systems, owing to the rapid development of deep learning. We formalize the recommender system as a sequential recommendation problem, intending to predict the next items that the user might be interacted with. Recent works usually give an overall embedding from a user's behavior sequence. However, a unified user embedding cannot reflect the user's multiple interests during a period. In this paper, we propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec. Our multi-interest module captures multiple interests from user behavior sequences, which can be exploited for retrieving candidate items from the large-scale item pool. These items are then fed into an aggregation module to obtain the overall recommendation. The aggregation module leverages a controllable factor to balance the recommendation accuracy and diversity. We conduct experiments for the sequential recommendation on two real-world datasets, Amazon and Taobao. Experimental results demonstrate that our framework achieves significant improvements over state-of-the-art models. Our framework has also been successfully deployed on the offline Alibaba distributed cloud platform.

北京阿比特科技有限公司