亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many areas of science and engineering encounter data defined on spherical manifolds. Modelling and analysis of spherical data often necessitates spherical harmonic transforms, at high degrees, and increasingly requires efficient computation of gradients for machine learning or other differentiable programming tasks. We develop novel algorithmic structures for accelerated and differentiable computation of generalised Fourier transforms on the sphere $\mathbb{S}^2$ and rotation group $\text{SO}(3)$, i.e. spherical harmonic and Wigner transforms, respectively. We present a recursive algorithm for the calculation of Wigner $d$-functions that is both stable to high harmonic degrees and extremely parallelisable. By tightly coupling this with separable spherical transforms, we obtain algorithms that exhibit an extremely parallelisable structure that is well-suited for the high throughput computing of modern hardware accelerators (e.g. GPUs). We also develop a hybrid automatic and manual differentiation approach so that gradients can be computed efficiently. Our algorithms are implemented within the JAX differentiable programming framework in the S2FFT software code. Numerous samplings of the sphere are supported, including equiangular and HEALPix sampling. Computational errors are at the order of machine precision for spherical samplings that admit a sampling theorem. When benchmarked against alternative C codes we observe up to a 400-fold acceleration. Furthermore, when distributing over multiple GPUs we achieve very close to optimal linear scaling with increasing number of GPUs due to the highly parallelised and balanced nature of our algorithms. Provided access to sufficiently many GPUs our transforms thus exhibit an unprecedented effective linear time complexity.

相關內容

Kleene's computability theory based on the S1-S9 computation schemes constitutes a model for computing with objects of any finite type and extends Turing's 'machine model' which formalises computing with real numbers. A fundamental distinction in Kleene's framework is between normal and non-normal functionals where the former compute the associated Kleene quantifier $\exists^n$ and the latter do not. Historically, the focus was on normal functionals, but recently new non-normal functionals have been studied based on well-known theorems, the weakest among which seems to be the uncountability of the reals. These new non-normal functionals are fundamentally different from historical examples like Tait's fan functional: the latter is computable from $\exists^2$, while the former are computable in $\exists^3$ but not in weaker oracles. Of course, there is a great divide or abyss separating $\exists^2$ and $\exists^3$ and we identify slight variations of our new non-normal functionals that are again computable in $\exists^2$, i.e. fall on different sides of this abyss. Our examples are based on mainstream mathematical notions, like quasi-continuity, Baire classes, bounded variation, and semi-continuity from real analysis.

We propose a Lawson-time-splitting extended Fourier pseudospectral (LTSeFP) method for the numerical integration of the Gross-Pitaevskii equation with time-dependent potential that is of low regularity in space. For the spatial discretization of low regularity potential, we use an extended Fourier pseudospectral (eFP) method, i.e., we compute the discrete Fourier transform of the low regularity potential in an extended window. For the temporal discretization, to efficiently implement the eFP method for time-dependent low regularity potential, we combine the standard time-splitting method with a Lawson-type exponential integrator to integrate potential and nonlinearity differently. The LTSeFP method is both accurate and efficient: it achieves first-order convergence in time and optimal-order convergence in space in $L^2$-norm under low regularity potential, while the computational cost is comparable to the standard time-splitting Fourier pseudospectral method. Theoretically, we also prove such convergence orders for a large class of spatially low regularity time-dependent potential. Extensive numerical results are reported to confirm the error estimates and to demonstrate the superiority of our method.

The numerical solution of continuum damage mechanics (CDM) problems suffers from convergence-related challenges during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. In this work, we present a novel unified arc-length (UAL) method, and we derive the formulation of the analytical tangent matrix and governing system of equations for both local and non-local gradient damage problems. Unlike existing versions of arc-length solvers that monolithically scale the external force vector, the proposed method treats the latter as an independent variable and determines the position of the system on the equilibrium path based on all the nodal variations of the external force vector. This approach renders the proposed solver substantially more efficient and robust than existing solvers used in CDM problems. We demonstrate the considerable advantages of the proposed algorithm through several benchmark 1D problems with sharp snap-backs and 2D examples under various boundary conditions and loading scenarios. The proposed UAL approach exhibits a superior ability of overcoming critical increments along the equilibrium path. Moreover, in the presented examples, the proposed UAL method is 1-2 orders of magnitude faster than force-controlled arc-length and monolithic Newton-Raphson solvers.

Navigating dynamic environments requires the robot to generate collision-free trajectories and actively avoid moving obstacles. Most previous works designed path planning algorithms based on one single map representation, such as the geometric, occupancy, or ESDF map. Although they have shown success in static environments, due to the limitation of map representation, those methods cannot reliably handle static and dynamic obstacles simultaneously. To address the problem, this paper proposes a gradient-based B-spline trajectory optimization algorithm utilizing the robot's onboard vision. The depth vision enables the robot to track and represent dynamic objects geometrically based on the voxel map. The proposed optimization first adopts the circle-based guide-point algorithm to approximate the costs and gradients for avoiding static obstacles. Then, with the vision-detected moving objects, our receding-horizon distance field is simultaneously used to prevent dynamic collisions. Finally, the iterative re-guide strategy is applied to generate the collision-free trajectory. The simulation and physical experiments prove that our method can run in real-time to navigate dynamic environments safely. Our software is available on GitHub as an open-source package.

High-dimensional data are routinely collected in many areas. We are particularly interested in Bayesian classification models in which one or more variables are imbalanced. Current Markov chain Monte Carlo algorithms for posterior computation are inefficient as $n$ and/or $p$ increase due to worsening time per step and mixing rates. One strategy is to use a gradient-based sampler to improve mixing while using data sub-samples to reduce per-step computational complexity. However, usual sub-sampling breaks down when applied to imbalanced data. Instead, we generalize piece-wise deterministic Markov chain Monte Carlo algorithms to include importance-weighted and mini-batch sub-sampling. These approaches maintain the correct stationary distribution with arbitrarily small sub-samples, and substantially outperform current competitors. We provide theoretical support and illustrate gains in simulated and real data applications.

Covariance matrices of random vectors contain information that is crucial for modelling. Certain structures and patterns of the covariances (or correlations) may be used to justify parametric models, e.g., autoregressive models. Until now, there have been only few approaches for testing such covariance structures systematically and in a unified way. In the present paper, we propose such a unified testing procedure, and we will exemplify the approach with a large variety of covariance structure models. This includes common structures such as diagonal matrices, Toeplitz matrices, and compound symmetry but also the more involved autoregressive matrices. We propose hypothesis tests for these structures, and we use bootstrap techniques for better small-sample approximation. The structures of the proposed tests invite for adaptations to other covariance patterns by choosing the hypothesis matrix appropriately. We prove their correctness for large sample sizes. The proposed methods require only weak assumptions. With the help of a simulation study, we assess the small sample properties of the tests. We also analyze a real data set to illustrate the application of the procedure.

This paper presents a time-causal analogue of the Gabor filter, as well as a both time-causal and time-recursive analogue of the Gabor transform, where the proposed time-causal representations obey both temporal scale covariance and a cascade property with a simplifying kernel over temporal scales. The motivation behind these constructions is to enable theoretically well-founded time-frequency analysis over multiple temporal scales for real-time situations, or for physical or biological modelling situations, when the future cannot be accessed, and the non-causal access to future in Gabor filtering is therefore not viable for a time-frequency analysis of the system. We develop the theory for these representations, obtained by replacing the Gaussian kernel in Gabor filtering with a time-causal kernel, referred to as the time-causal limit kernel, which guarantees simplification properties from finer to coarser levels of scales in a time-causal situation, similar as the Gaussian kernel can be shown to guarantee over a non-causal temporal domain. In these ways, the proposed time-frequency representations guarantee well-founded treatment over multiple scales, in situations when the characteristic scales in the signals, or physical or biological phenomena, to be analyzed may vary substantially, and additionally all steps in the time-frequency analysis have to be fully time-causal.

We consider scalar semilinear elliptic PDEs, where the nonlinearity is strongly monotone, but only locally Lipschitz continuous. To linearize the arising discrete nonlinear problem, we employ a damped Zarantonello iteration, which leads to a linear Poisson-type equation that is symmetric and positive definite. The resulting system is solved by a contractive algebraic solver such as a multigrid method with local smoothing. We formulate a fully adaptive algorithm that equibalances the various error components coming from mesh refinement, iterative linearization, and algebraic solver. We prove that the proposed adaptive iteratively linearized finite element method (AILFEM) guarantees convergence with optimal complexity, where the rates are understood with respect to the overall computational cost (i.e., the computational time). Numerical experiments investigate the involved adaptivity parameters.

Advances in survival analysis have facilitated unprecedented flexibility in data modeling, yet there remains a lack of tools for graphically illustrating the influence of continuous covariates on predicted survival outcomes. We propose the utilization of a colored contour plot to depict the predicted survival probabilities over time, and provide a Shiny app and R package as implementations of this tool. Our approach is capable of supporting conventional models, including the Cox and Fine-Gray models. However, its capability shines when coupled with cutting-edge machine learning models such as random survival forests and deep neural networks.

Building robust, interpretable, and secure AI system requires quantifying and representing uncertainty under a probabilistic perspective to mimic human cognitive abilities. However, probabilistic computation presents significant challenges for most conventional artificial neural network, as they are essentially implemented in a deterministic manner. In this paper, we develop an efficient probabilistic computation framework by truncating the probabilistic representation of neural activation up to its mean and covariance and construct a moment neural network that encapsulates the nonlinear coupling between the mean and covariance of the underlying stochastic network. We reveal that when only the mean but not the covariance is supervised during gradient-based learning, the unsupervised covariance spontaneously emerges from its nonlinear coupling with the mean and faithfully captures the uncertainty associated with model predictions. Our findings highlight the inherent simplicity of probabilistic computation by seamlessly incorporating uncertainty into model prediction, paving the way for integrating it into large-scale AI systems.

北京阿比特科技有限公司