Fiber-reinforced soft biological tissues are typically modeled as hyperelastic, anisotropic, and nearly incompressible materials. To enforce incompressibility a multiplicative split of the deformation gradient into a volumetric and an isochoric part is a very common approach. However, due to the high stiffness of anisotropic materials in the preferred directions, the finite element analysis of such problems often suffers from severe locking effects and numerical instabilities. In this paper, we present novel methods to overcome locking phenomena for anisotropic materials using stabilized P1-P1 elements. We introduce different stabilization techniques and demonstrate the high robustness and computational efficiency of the chosen methods. In several benchmark problems we compare the approach to standard linear elements and show the accuracy and versatility of the methods to simulate anisotropic, nearly and fully incompressible materials. We are convinced that this numerical framework offers the possibility to accelerate accurate simulations of biological tissues, enabling patient-specfic parameterization studies, which require numerous forward simulations.
This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.
How to obtain good value estimation is one of the key problems in Reinforcement Learning (RL). Current value estimation methods, such as DDPG and TD3, suffer from unnecessary over- or underestimation bias. In this paper, we explore the potential of double actors, which has been neglected for a long time, for better value function estimation in continuous setting. First, we uncover and demonstrate the bias alleviation property of double actors by building double actors upon single critic and double critics to handle overestimation bias in DDPG and underestimation bias in TD3 respectively. Next, we interestingly find that double actors help improve the exploration ability of the agent. Finally, to mitigate the uncertainty of value estimate from double critics, we further propose to regularize the critic networks under double actors architecture, which gives rise to Double Actors Regularized Critics (DARC) algorithm. Extensive experimental results on challenging continuous control tasks show that DARC significantly outperforms state-of-the-art methods with higher sample efficiency.
Unpaired image-to-image translation has been applied successfully to natural images but has received very little attention for manifold-valued data such as in diffusion tensor imaging (DTI). The non-Euclidean nature of DTI prevents current generative adversarial networks (GANs) from generating plausible images and has mainly limited their application to diffusion MRI scalar maps, such as fractional anisotropy (FA) or mean diffusivity (MD). Even if these scalar maps are clinically useful, they mostly ignore fiber orientations and therefore have limited applications for analyzing brain fibers. Here, we propose a manifold-aware CycleGAN that learns the generation of high-resolution DTI from unpaired T1w images. We formulate the objective as a Wasserstein distance minimization problem of data distributions on a Riemannian manifold of symmetric positive definite 3x3 matrices SPD(3), using adversarial and cycle-consistency losses. To ensure that the generated diffusion tensors lie on the SPD(3) manifold, we exploit the theoretical properties of the exponential and logarithm maps of the Log-Euclidean metric. We demonstrate that, unlike standard GANs, our method is able to generate realistic high-resolution DTI that can be used to compute diffusion-based metrics and potentially run fiber tractography algorithms. To evaluate our model's performance, we compute the cosine similarity between the generated tensors principal orientation and their ground-truth orientation, the mean squared error (MSE) of their derived FA values and the Log-Euclidean distance between the tensors. We demonstrate that our method produces 2.5 times better FA MSE than a standard CycleGAN and up to 30% better cosine similarity than a manifold-aware Wasserstein GAN while synthesizing sharp high-resolution DTI.
We present DeepICP - a novel end-to-end learning-based 3D point cloud registration framework that achieves comparable registration accuracy to prior state-of-the-art geometric methods. Different from other keypoint based methods where a RANSAC procedure is usually needed, we implement the use of various deep neural network structures to establish an end-to-end trainable network. Our keypoint detector is trained through this end-to-end structure and enables the system to avoid the inference of dynamic objects, leverages the help of sufficiently salient features on stationary objects, and as a result, achieves high robustness. Rather than searching the corresponding points among existing points, the key contribution is that we innovatively generate them based on learned matching probabilities among a group of candidates, which can boost the registration accuracy. Our loss function incorporates both the local similarity and the global geometric constraints to ensure all above network designs can converge towards the right direction. We comprehensively validate the effectiveness of our approach using both the KITTI dataset and the Apollo-SouthBay dataset. Results demonstrate that our method achieves comparable or better performance than the state-of-the-art geometry-based methods. Detailed ablation and visualization analysis are included to further illustrate the behavior and insights of our network. The low registration error and high robustness of our method makes it attractive for substantial applications relying on the point cloud registration task.
In information retrieval (IR) and related tasks, term weighting approaches typically consider the frequency of the term in the document and in the collection in order to compute a score reflecting the importance of the term for the document. In tasks characterized by the presence of training data (such as text classification) it seems logical that the term weighting function should take into account the distribution (as estimated from training data) of the term across the classes of interest. Although `supervised term weighting' approaches that use this intuition have been described before, they have failed to show consistent improvements. In this article we analyse the possible reasons for this failure, and call consolidated assumptions into question. Following this criticism we propose a novel supervised term weighting approach that, instead of relying on any predefined formula, learns a term weighting function optimised on the training set of interest; we dub this approach \emph{Learning to Weight} (LTW). The experiments that we run on several well-known benchmarks, and using different learning methods, show that our method outperforms previous term weighting approaches in text classification.
Lane mark detection is an important element in the road scene analysis for Advanced Driver Assistant System (ADAS). Limited by the onboard computing power, it is still a challenge to reduce system complexity and maintain high accuracy at the same time. In this paper, we propose a Lane Marking Detector (LMD) using a deep convolutional neural network to extract robust lane marking features. To improve its performance with a target of lower complexity, the dilated convolution is adopted. A shallower and thinner structure is designed to decrease the computational cost. Moreover, we also design post-processing algorithms to construct 3rd-order polynomial models to fit into the curved lanes. Our system shows promising results on the captured road scenes.
Clustering is an essential data mining tool that aims to discover inherent cluster structure in data. For most applications, applying clustering is only appropriate when cluster structure is present. As such, the study of clusterability, which evaluates whether data possesses such structure, is an integral part of cluster analysis. However, methods for evaluating clusterability vary radically, making it challenging to select a suitable measure. In this paper, we perform an extensive comparison of measures of clusterability and provide guidelines that clustering users can reference to select suitable measures for their applications.
Because of continuous advances in mathematical programing, Mix Integer Optimization has become a competitive vis-a-vis popular regularization method for selecting features in regression problems. The approach exhibits unquestionable foundational appeal and versatility, but also poses important challenges. We tackle these challenges, reducing computational burden when tuning the sparsity bound (a parameter which is critical for effectiveness) and improving performance in the presence of feature collinearity and of signals that vary in nature and strength. Importantly, we render the approach efficient and effective in applications of realistic size and complexity - without resorting to relaxations or heuristics in the optimization, or abandoning rigorous cross-validation tuning. Computational viability and improved performance in subtler scenarios is achieved with a multi-pronged blueprint, leveraging characteristics of the Mixed Integer Programming framework and by means of whitening, a data pre-processing step.
We provide initial seedings to the Quick Shift clustering algorithm, which approximate the locally high-density regions of the data. Such seedings act as more stable and expressive cluster-cores than the singleton modes found by Quick Shift. We establish statistical consistency guarantees for this modification. We then show strong clustering performance on real datasets as well as promising applications to image segmentation.
We present a challenging and realistic novel dataset for evaluating 6-DOF object tracking algorithms. Existing datasets show serious limitations---notably, unrealistic synthetic data, or real data with large fiducial markers---preventing the community from obtaining an accurate picture of the state-of-the-art. Our key contribution is a novel pipeline for acquiring accurate ground truth poses of real objects w.r.t a Kinect V2 sensor by using a commercial motion capture system. A total of 100 calibrated sequences of real objects are acquired in three different scenarios to evaluate the performance of trackers in various scenarios: stability, robustness to occlusion and accuracy during challenging interactions between a person and the object. We conduct an extensive study of a deep 6-DOF tracking architecture and determine a set of optimal parameters. We enhance the architecture and the training methodology to train a 6-DOF tracker that can robustly generalize to objects never seen during training, and demonstrate favorable performance compared to previous approaches trained specifically on the objects to track.