A current assumption of most clustering methods is that the training data and future data are taken from the same distribution. However, this assumption may not hold in most real-world scenarios. In this paper, we propose an information theoretical importance sampling based approach for clustering problems (ITISC) which minimizes the worst case of expected distortions under the constraint of distribution deviation. The distribution deviation constraint can be converted to the constraint over a set of weight distributions centered on the uniform distribution derived from importance sampling. The objective of the proposed approach is to minimize the loss under maximum degradation hence the resulting problem is a constrained minimax optimization problem which can be reformulated to an unconstrained problem using the Lagrange method. The optimization problem can be solved by both an alternative optimization algorithm or a general optimization routine by commercially available software. Experiment results on synthetic datasets and a real-world load forecasting problem validate the effectiveness of the proposed model. Furthermore, we show that fuzzy c-means is a special case of ITISC with the logarithmic distortion, and this observation provides an interesting physical interpretation for fuzzy exponent $m$.
Unsupervised node clustering (or community detection) is a classical graph learning task. In this paper, we study algorithms, which exploit the geometry of the graph to identify densely connected substructures, which form clusters or communities. Our method implements discrete Ricci curvatures and their associated geometric flows, under which the edge weights of the graph evolve to reveal its community structure. We consider several discrete curvature notions and analyze the utility of the resulting algorithms. In contrast to prior literature, we study not only single-membership community detection, where each node belongs to exactly one community, but also mixed-membership community detection, where communities may overlap. For the latter, we argue that it is beneficial to perform community detection on the line graph, i.e., the graph's dual. We provide both theoretical and empirical evidence for the utility of our curvature-based clustering algorithms. In addition, we give several results on the relationship between the curvature of a graph and that of its dual, which enable the efficient implementation of our proposed mixed-membership community detection approach and which may be of independent interest for curvature-based network analysis.
Bayesian nonparametric mixture models are widely used to cluster observations. However, one major drawback of the approach is that the estimated partition often presents unbalanced clusters' frequencies with only a few dominating clusters and a large number of sparsely-populated ones. This feature translates into results that are often uninterpretable unless we accept to ignore a relevant number of observations and clusters. Interpreting the posterior distribution as penalized likelihood, we show how the unbalance can be explained as a direct consequence of the cost functions involved in estimating the partition. In light of our findings, we propose a novel Bayesian estimator of the clustering configuration. The proposed estimator is equivalent to a post-processing procedure that reduces the number of sparsely-populated clusters and enhances interpretability. The procedure takes the form of entropy-regularization of the Bayesian estimate. While being computationally convenient with respect to alternative strategies, it is also theoretically justified as a correction to the Bayesian loss function used for point estimation and, as such, can be applied to any posterior distribution of clusters, regardless of the specific model used.
Information about action costs is critical for real-world AI planning applications. Rather than rely solely on declarative action models, recent approaches also use black-box external action cost estimators, often learned from data, that are applied during the planning phase. These, however, can be computationally expensive, and produce uncertain values. In this paper we suggest a generalization of deterministic planning with action costs that allows selecting between multiple estimators for action cost, to balance computation time against bounded estimation uncertainty. This enables a much richer -- and correspondingly more realistic -- problem representation. Importantly, it allows planners to bound plan accuracy, thereby increasing reliability, while reducing unnecessary computational burden, which is critical for scaling to large problems. We introduce a search algorithm, generalizing $A^*$, that solves such planning problems, and additional algorithmic extensions. In addition to theoretical guarantees, extensive experiments show considerable savings in runtime compared to alternatives.
Low-rank tensor analysis has received widespread attention with many practical applications. However, the tensor data are often contaminated by outliers or sample-specific corruptions. How to recover the tensor data that are corrupted by outliers and perform data clustering remains a challenging problem. This paper develops an outlier-robust tensor low-rank representation (OR-TLRR) method for simultaneous outlier detection and tensor data clustering based on the tensor singular value decomposition (t-SVD) algebraic framework. It is motivated by the recently proposed tensor-tensor product induced by invertible linear transforms that satisfy certain conditions. For tensor observations with arbitrary outlier corruptions, OR-TLRR has provable performance guarantee for exactly recovering the row space of clean data and detecting outliers under mild conditions. Moreover, an extension of OR-TLRR is also proposed to handle the case when parts of the data are missing. Finally, extensive experimental results on both synthetic and real data demonstrate the effectiveness of the proposed algorithms.
It is well known that it is impossible to construct useful confidence intervals (CIs) about the mean or median of a response $Y$ conditional on features $X = x$ without making strong assumptions about the joint distribution of $X$ and $Y$. This paper introduces a new framework for reasoning about problems of this kind by casting the conditional problem at different levels of resolution, ranging from coarse to fine localization. In each of these problems, we consider local quantiles defined as the marginal quantiles of $Y$ when $(X,Y)$ is resampled in such a way that samples $X$ near $x$ are up-weighted while the conditional distribution $Y \mid X$ does not change. We then introduce the Weighted Quantile method, which asymptotically produces the uniformly most accurate confidence intervals for these local quantiles no matter the (unknown) underlying distribution. Another method, namely, the Quantile Rejection method, achieves finite sample validity under no assumption whatsoever. We conduct extensive numerical studies demonstrating that both of these methods are valid. In particular, we show that the Weighted Quantile procedure achieves nominal coverage as soon as the effective sample size is in the range of 10 to 20.
We design new algorithms for $k$-clustering in high-dimensional Euclidean spaces. These algorithms run in the Massively Parallel Computation (MPC) model, and are fully scalable, meaning that the local memory in each machine is $n^{\sigma}$ for arbitrarily small fixed $\sigma>0$. Importantly, the local memory may be substantially smaller than $k$. Our algorithms take $O(1)$ rounds and achieve $O(1)$-bicriteria approximation for $k$-Median and for $k$-Means, namely, they compute $(1+\varepsilon)k$ clusters of cost within $O(1/\varepsilon^2)$-factor of the optimum. Previous work achieves only $\mathrm{poly}(\log n)$-bicriteria approximation [Bhaskara et al., ICML'18], or handles a special case [Cohen-Addad et al., ICML'22]. Our results rely on an MPC algorithm for $O(1)$-approximation of facility location in $O(1)$ rounds. A primary technical tool that we develop, and may be of independent interest, is a new MPC primitive for geometric aggregation, namely, computing certain statistics on an approximate neighborhood of every data point, which includes range counting and nearest-neighbor search. Our implementation of this primitive works in high dimension, and is based on consistent hashing (aka sparse partition), a technique that was recently used for streaming algorithms [Czumaj et al., FOCS'22].
Snapshot compressive imaging (SCI) systems have gained significant attention in recent years. While previous theoretical studies have primarily focused on the performance analysis of Gaussian masks, practical SCI systems often employ binary-valued masks. Furthermore, recent research has demonstrated that optimized binary masks can significantly enhance system performance. In this paper, we present a comprehensive theoretical characterization of binary masks and their impact on SCI system performance. Initially, we investigate the scenario where the masks are binary and independently identically distributed (iid), revealing a noteworthy finding that aligns with prior numerical results. Specifically, we show that the optimal probability of non-zero elements in the masks is smaller than 0.5. This result provides valuable insights into the design and optimization of binary masks for SCI systems, facilitating further advancements in the field. Additionally, we extend our analysis to characterize the performance of SCI systems where the mask entries are not independent but are generated based on a stationary first-order Markov process. Overall, our theoretical framework offers a comprehensive understanding of the performance implications associated with binary masks in SCI systems.
This paper focuses on spatial time-optimal motion planning, a generalization of the exact time-optimal path following problem that allows the system to plan within a predefined space. In contrast to state-of-the-art methods, we drop the assumption that a collision-free geometric reference is given. Instead, we present a two-stage motion planning method that solely relies on a goal location and a geometric representation of the environment to compute a time-optimal trajectory that is compliant with system dynamics and constraints. To do so, the proposed scheme first computes an obstacle-free Pythagorean Hodograph parametric spline, and second solves a spatially reformulated minimum-time optimization problem. The spline obtained in the first stage is not a geometric reference, but an extension of the environment representation, and thus, time-optimality of the solution is guaranteed. The efficacy of the proposed approach is benchmarked by a known planar example and validated in a more complex spatial system, illustrating its versatility and applicability.
The objective of clusterability evaluation is to check whether a clustering structure exists within the data set. As a crucial yet often-overlooked issue in cluster analysis, it is essential to conduct such a test before applying any clustering algorithm. If a data set is unclusterable, any subsequent clustering analysis would not yield valid results. Despite its importance, the majority of existing studies focus on numerical data, leaving the clusterability evaluation issue for categorical data as an open problem. Here we present TestCat, a testing-based approach to assess the clusterability of categorical data in terms of an analytical $p$-value. The key idea underlying TestCat is that clusterable categorical data possess many strongly correlated attribute pairs and hence the sum of chi-squared statistics of all attribute pairs is employed as the test statistic for $p$-value calculation. We apply our method to a set of benchmark categorical data sets, showing that TestCat outperforms those solutions based on existing clusterability evaluation methods for numeric data. To the best of our knowledge, our work provides the first way to effectively recognize the clusterability of categorical data in a statistically sound manner.
In this paper, we propose a one-stage online clustering method called Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning. To be specific, for a given dataset, the positive and negative instance pairs are constructed through data augmentations and then projected into a feature space. Therein, the instance- and cluster-level contrastive learning are respectively conducted in the row and column space by maximizing the similarities of positive pairs while minimizing those of negative ones. Our key observation is that the rows of the feature matrix could be regarded as soft labels of instances, and accordingly the columns could be further regarded as cluster representations. By simultaneously optimizing the instance- and cluster-level contrastive loss, the model jointly learns representations and cluster assignments in an end-to-end manner. Extensive experimental results show that CC remarkably outperforms 17 competitive clustering methods on six challenging image benchmarks. In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19\% (39\%) performance improvement compared with the best baseline.