Human supervisors in multi-robot systems are primarily responsible for monitoring robots, but can also be assigned with secondary tasks. These tasks can act as interruptions and can be categorized as either intrinsic, i.e., being directly related to the monitoring task, or extrinsic, i.e., being unrelated. In this paper, we investigate the impact of these two types of interruptions through a user study ($N=39$), where participants monitor a number of remote mobile robots while intermittently being interrupted by either a robot fault correction task (intrinsic) or a messaging task (extrinsic). We find that task performance of participants does not change significantly with the interruptions but depends greatly on the number of robots. However, interruptions result in an increase in perceived workload, and extrinsic interruptions have a more negative effect on workload across all NASA-TLX scales. Participants also reported switching between extrinsic interruptions and the primary task to be more difficult compared to the intrinsic interruption case. Statistical significance of these results is confirmed using ANOVA and one-sample t-test. These findings suggest that when deciding task assignment in such supervision systems, one should limit interruptions from secondary tasks, especially extrinsic ones, in order to limit user workload.
Following the successful debut of polyp detection and characterization, more advanced automation tools are being developed for colonoscopy. The new automation tasks, such as quality metrics or report generation, require understanding of the procedure flow that includes activities, events, anatomical landmarks, etc. In this work we present a method for automatic semantic parsing of colonoscopy videos. The method uses a novel DL multi-label temporal segmentation model trained in supervised and unsupervised regimes. We evaluate the accuracy of the method on a test set of over 300 annotated colonoscopy videos, and use ablation to explore the relative importance of various method's components.
Deep person generation has attracted extensive research attention due to its wide applications in virtual agents, video conferencing, online shopping and art/movie production. With the advancement of deep learning, visual appearances (face, pose, cloth) of a person image can be easily generated or manipulated on demand. In this survey, we first summarize the scope of person generation, and then systematically review recent progress and technical trends in deep person generation, covering three major tasks: talking-head generation (face), pose-guided person generation (pose) and garment-oriented person generation (cloth). More than two hundred papers are covered for a thorough overview, and the milestone works are highlighted to witness the major technical breakthrough. Based on these fundamental tasks, a number of applications are investigated, e.g., virtual fitting, digital human, generative data augmentation. We hope this survey could shed some light on the future prospects of deep person generation, and provide a helpful foundation for full applications towards digital human.
Multi-modal foundation models combining vision and language models such as Flamingo or GPT-4 have recently gained enormous interest. Alignment of foundation models is used to prevent models from providing toxic or harmful output. While malicious users have successfully tried to jailbreak foundation models, an equally important question is if honest users could be harmed by malicious third-party content. In this paper we show that imperceivable attacks on images in order to change the caption output of a multi-modal foundation model can be used by malicious content providers to harm honest users e.g. by guiding them to malicious websites or broadcast fake information. This indicates that countermeasures to adversarial attacks should be used by any deployed multi-modal foundation model.
Deep neural networks are vulnerable to adversarial examples crafted by applying human-imperceptible perturbations on clean inputs. Although many attack methods can achieve high success rates in the white-box setting, they also exhibit weak transferability in the black-box setting. Recently, various methods have been proposed to improve adversarial transferability, in which the input transformation is one of the most effective methods. In this work, we notice that existing input transformation-based works mainly adopt the transformed data in the same domain for augmentation. Inspired by domain generalization, we aim to further improve the transferability using the data augmented from different domains. Specifically, a style transfer network can alter the distribution of low-level visual features in an image while preserving semantic content for humans. Hence, we propose a novel attack method named Style Transfer Method (STM) that utilizes a proposed arbitrary style transfer network to transform the images into different domains. To avoid inconsistent semantic information of stylized images for the classification network, we fine-tune the style transfer network and mix up the generated images added by random noise with the original images to maintain semantic consistency and boost input diversity. Extensive experimental results on the ImageNet-compatible dataset show that our proposed method can significantly improve the adversarial transferability on either normally trained models or adversarially trained models than state-of-the-art input transformation-based attacks. Code is available at: //github.com/Zhijin-Ge/STM.
Invertible neural networks (INNs) represent an important class of deep neural network architectures that have been widely used in several applications. The universal approximation properties of INNs have also been established recently. However, the approximation rate of INNs is largely missing. In this work, we provide an analysis of the capacity of a class of coupling-based INNs to approximate bi-Lipschitz continuous mappings on a compact domain, and the result shows that it can well approximate both forward and inverse maps simultaneously. Furthermore, we develop an approach for approximating bi-Lipschitz maps on infinite-dimensional spaces that simultaneously approximate the forward and inverse maps, by combining model reduction with principal component analysis and INNs for approximating the reduced map, and we analyze the overall approximation error of the approach. Preliminary numerical results show the feasibility of the approach for approximating the solution operator for parameterized second-order elliptic problems.
Multidimensional constellation shaping of up to 32 dimensions with different spectral efficiencies are compared through AWGN and fiber-optic simulations. The results show that no constellation is universal and the balance of required and effective SNRs should be jointly considered for the specific optical transmission scenario.
Network alignment (NA) is the task of finding the correspondence of nodes between two networks based on the network structure and node attributes. Our study is motivated by the fact that, since most of existing NA methods have attempted to discover all node pairs at once, they do not harness information enriched through interim discovery of node correspondences to more accurately find the next correspondences during the node matching. To tackle this challenge, we propose Grad-Align, a new NA method that gradually discovers node pairs by making full use of node pairs exhibiting strong consistency, which are easy to be discovered in the early stage of gradual matching. Specifically, Grad-Align first generates node embeddings of the two networks based on graph neural networks along with our layer-wise reconstruction loss, a loss built upon capturing the first-order and higher-order neighborhood structures. Then, nodes are gradually aligned by computing dual-perception similarity measures including the multi-layer embedding similarity as well as the Tversky similarity, an asymmetric set similarity using the Tversky index applicable to networks with different scales. Additionally, we incorporate an edge augmentation module into Grad-Align to reinforce the structural consistency. Through comprehensive experiments using real-world and synthetic datasets, we empirically demonstrate that Grad-Align consistently outperforms state-of-the-art NA methods.
Whenever humans use tools human performance is enhanced. Cognitive systems are a new kind of tool continually increasing in cognitive capability and are now performing high level cognitive tasks previously thought to be explicitly human. Usage of such tools, known as cogs, are expected to result in ever increasing levels of human cognitive augmentation. In a human cog ensemble, a cooperative, peer to peer, and collaborative dialog between a human and a cognitive system, human cognitive capability is augmented as a result of the interaction. The human cog ensemble is therefore able to achieve more than just the human or the cog working alone. This article presents results from two studies designed to measure the effect information supplied by a cog has on cognitive accuracy, the ability to produce the correct result, and cognitive precision, the propensity to produce only the correct result. Both cognitive accuracy and cognitive precision are shown to be increased by information of different types (policies and rules, examples, and suggestions) and with different kinds of problems (inventive problem solving and puzzles). Similar effects shown in other studies are compared.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.