亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Decision making in advanced driver assistance systems involves in general the estimated trajectories of the surrounding objects. Multiple object tracking refers to the process of estimating in real time these trajectories, leveraging for this purpose sensors to detect the objects. This paper deals with devising attacks on object tracking in automated vehicles. The vehicle is assumed to have a detection-based object tracking system that relies on multiple sensors and uses an estimator such as a Kalman filter for sensor fusion and state estimation. The attack goal is to modify the object's state estimated by the victim vehicle to put the vehicle in an unsafe situation. This goal is achieved by judiciously perturbing some or all of the sensor outputs corresponding to the object of interest over a desired horizon. A stochastic model predictive control (SMPC) problem is formulated to compute the sequence of perturbations, whereby hard constraints on the perturbations and probabilistic chance constraints on the object's state are imposed. The chance constraints ensure that some desired conditions for a successful attack are satisfied with a prespecified probability. Reasonable assumptions are then made to obtain a computationally tractable linear SMPC program. The approach is demonstrated on an adaptive cruise control system in a simulation environment, where successful sequential attacks are generated, leading the victim vehicle into dangerous driving situations including collisions.

相關內容

We approach the fundamental problem of obstacle avoidance for robotic systems via the lens of online learning. In contrast to prior work that either assumes worst-case realizations of uncertainty in the environment or a stationary stochastic model of uncertainty, we propose a method that is efficient to implement and provably grants instance-optimality with respect to perturbations of trajectories generated from an open-loop planner (in the sense of minimizing worst-case regret). The resulting policy adapts online to realizations of uncertainty and provably compares well with the best obstacle avoidance policy in hindsight from a rich class of policies. The method is validated in simulation on a dynamical system environment and compared to baseline open-loop planning and robust Hamilton- Jacobi reachability techniques. Further, it is implemented on a hardware example where a quadruped robot traverses a dense obstacle field and encounters input disturbances due to time delays, model uncertainty, and dynamics nonlinearities.

With the development of the Internet of Vehicles (IoV), vehicle wireless communication poses serious cybersecurity challenges. Faulty information, such as fake vehicle positions and speeds sent by surrounding vehicles, could cause vehicle collisions, traffic jams, and even casualties. Additionally, private vehicle data leakages, such as vehicle trajectory and user account information, may damage user property and security. Therefore, achieving a cyberattack-defense scheme in the IoV system with faulty data saturation is necessary. This paper proposes a Federated Learning-based Vehicle Trajectory Prediction Algorithm against Cyberattacks (FL-TP) to address the above problems. The FL-TP is intensively trained and tested using a publicly available Vehicular Reference Misbehavior (VeReMi) dataset with five types of cyberattacks: constant, constant offset, random, random offset, and eventual stop. The results show that the proposed FL-TP algorithm can improve cyberattack detection and trajectory prediction by up to 6.99% and 54.86%, respectively, under the maximum cyberattack permeability scenarios compared with benchmark methods.

The 4D millimeter-wave (mmWave) radar, capable of measuring the range, azimuth, elevation, and velocity of targets, has attracted considerable interest in the autonomous driving community. This is attributed to its robustness in extreme environments and outstanding velocity and elevation measurement capabilities. However, despite the rapid development of research related to its sensing theory and application, there is a notable lack of surveys on the topic of 4D mmWave radar. To address this gap and foster future research in this area, this paper presents a comprehensive survey on the use of 4D mmWave radar in autonomous driving. Reviews on the theoretical background and progress of 4D mmWave radars are presented first, including the signal processing flow, resolution improvement ways, extrinsic calibration process, and point cloud generation methods. Then it introduces related datasets and application algorithms in autonomous driving perception and localization and mapping tasks. Finally, this paper concludes by predicting future trends in the field of 4D mmWave radar. To the best of our knowledge, this is the first survey specifically for the 4D mmWave radar.

In dynamic mechanism design literature, one critical aspect has been typically ignored-the agents' periodic participation, which they can adapt and plan strategically. We propose a framework for dynamic principal-multiagent problems, augmenting the classic model by incorporating agents' periodic coupled decisions on participation and regular action selections. The principal faces adverse selection and designs a mechanism comprising a task policy profile (defining evolving agent action menus), a coupling policy profile (affecting agent utilities), and an off-switch function profile (assigning rewards or penalties upon agent withdrawal). Firstly, we introduce payoff-flow conservation-a sufficient condition to ensure dynamic incentive compatibility for regular actions. Secondly, we formulate a unique process, persistence transformation, which integrates task policy's implicit functions, enabling a closed-form off-switch function derivation, hence securing sufficient conditions for agents' coupled decisions' incentive compatibility, aligning with the principal's preferences. Thirdly, we go beyond the traditional envelope theorem by presenting a necessary condition for incentive compatibility, leveraging the coupled optimality of principal-desired actions. This approach helps explicitly formulate both the coupling and off-switch functions. Finally, we establish envelope-like conditions exclusively on the task policies, facilitating the application of the first-order approach.

Imitation learning has achieved great success in many sequential decision-making tasks, in which a neural agent is learned by imitating collected human demonstrations. However, existing algorithms typically require a large number of high-quality demonstrations that are difficult and expensive to collect. Usually, a trade-off needs to be made between demonstration quality and quantity in practice. Targeting this problem, in this work we consider the imitation of sub-optimal demonstrations, with both a small clean demonstration set and a large noisy set. Some pioneering works have been proposed, but they suffer from many limitations, e.g., assuming a demonstration to be of the same optimality throughout time steps and failing to provide any interpretation w.r.t knowledge learned from the noisy set. Addressing these problems, we propose {\method} by evaluating and imitating at the sub-demonstration level, encoding action primitives of varying quality into different skills. Concretely, {\method} consists of a high-level controller to discover skills and a skill-conditioned module to capture action-taking policies, and is trained following a two-phase pipeline by first discovering skills with all demonstrations and then adapting the controller to only the clean set. A mutual-information-based regularization and a dynamic sub-demonstration optimality estimator are designed to promote disentanglement in the skill space. Extensive experiments are conducted over two gym environments and a real-world healthcare dataset to demonstrate the superiority of {\method} in learning from sub-optimal demonstrations and its improved interpretability by examining learned skills.

The optimal implementation of federated learning (FL) in practical edge computing systems has been an outstanding problem. In this paper, we propose an optimization-based quantized FL algorithm, which can appropriately fit a general edge computing system with uniform or nonuniform computing and communication resources at the workers. Specifically, we first present a new random quantization scheme and analyze its properties. Then, we propose a general quantized FL algorithm, namely GQFedWAvg. Specifically, GQFedWAvg applies the proposed quantization scheme to quantize wisely chosen model update-related vectors and adopts a generalized mini-batch stochastic gradient descent (SGD) method with the weighted average local model updates in global model aggregation. Besides, GQFedWAvg has several adjustable algorithm parameters to flexibly adapt to the computing and communication resources at the server and workers. We also analyze the convergence of GQFedWAvg. Next, we optimize the algorithm parameters of GQFedWAvg to minimize the convergence error under the time and energy constraints. We successfully tackle the challenging non-convex problem using general inner approximation (GIA) and multiple delicate tricks. Finally, we interpret GQFedWAvg's function principle and show its considerable gains over existing FL algorithms using numerical results.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

北京阿比特科技有限公司