To deal with the ill-posed nature of the inverse heat conduction problem (IHCP), the regularization parameter alpha can be incorporated into a minimization problem, which is known as Tikhonov regularization method, a popular technique to obtain stable sequential solutions. Because alpha is a penalty term, its excessive use may cause large bias errors. Ridge regression was developed as an estimator of the optimal alpha to minimize the magnitude of a gain coefficient matrix appropriately. However, the sensitivity coefficient matrix included in the gain coefficient matrix depends on the time integrator; thus, certain parameters of the time integrators should be carefully considered with alpha to handle instability. Based on this motivation, we propose an effective iterative hybrid parameter selection algorithm to obtain stable inverse solutions.
It is well-known that an algorithm exists which approximates the NP-complete problem of Set Cover within a factor of ln(n), and it was recently proven that this approximation ratio is optimal unless P = NP. This optimality result is the product of many advances in characterizations of NP, in terms of interactive proof systems and probabilistically checkable proofs (PCP), and improvements to the analyses thereof. However, as a result, it is difficult to extract the development of Set Cover approximation bounds from the greater scope of proof system analysis. This paper attempts to present a chronological progression of results on lower-bounding the approximation ratio of Set Cover. We analyze a series of proofs of progressively better bounds and unify the results under similar terminologies and frameworks to provide an accurate comparison of proof techniques and their results. We also treat many preliminary results as black-boxes to better focus our analysis on the core reductions to Set Cover instances. The result is alternative versions of several hardness proofs, beginning with initial inapproximability results and culminating in a version of the proof that ln(n) is a tight lower bound.
To overcome topological constraints and improve the expressiveness of normalizing flow architectures, Wu, K\"ohler and No\'e introduced stochastic normalizing flows which combine deterministic, learnable flow transformations with stochastic sampling methods. In this paper, we consider stochastic normalizing flows from a Markov chain point of view. In particular, we replace transition densities by general Markov kernels and establish proofs via Radon-Nikodym derivatives which allows to incorporate distributions without densities in a sound way. Further, we generalize the results for sampling from posterior distributions as required in inverse problems. The performance of the proposed conditional stochastic normalizing flow is demonstrated by numerical examples.
The paper studies the multi-user precoding problem as a non-convex optimization problem for wireless multiple input and multiple output (MIMO) systems. In our work, we approximate the target Spectral Efficiency function with a novel computationally simpler function. Then, we reduce the precoding problem to an unconstrained optimization task using a special differential projection method and solve it by the Quasi-Newton L-BFGS iterative procedure to achieve gains in capacity. We are testing the proposed approach in several scenarios generated using Quadriga -- open-source software for generating realistic radio channel impulse response. Our method shows monotonic improvement over heuristic methods with reasonable computation time. The proposed L-BFGS optimization scheme is novel in this area and shows a significant advantage over the standard approaches. Proposed method has a simple implementation and can be a good reference for other heuristic algorithms in this field.
Semiconductor device models are essential to understand the charge transport in thin film transistors (TFTs). Using these TFT models to draw inference involves estimating parameters used to fit to the experimental data. These experimental data can involve extracted charge carrier mobility or measured current. Estimating these parameters help us draw inferences about device performance. Fitting a TFT model for a given experimental data using the model parameters relies on manual fine tuning of multiple parameters by human experts. Several of these parameters may have confounding effects on the experimental data, making their individual effect extraction a non-intuitive process during manual tuning. To avoid this convoluted process, we propose a new method for automating the model parameter extraction process resulting in an accurate model fitting. In this work, model choice based approximate Bayesian computation (aBc) is used for generating the posterior distribution of the estimated parameters using observed mobility at various gate voltage values. Furthermore, it is shown that the extracted parameters can be accurately predicted from the mobility curves using gradient boosted trees. This work also provides a comparative analysis of the proposed framework with fine-tuned neural networks wherein the proposed framework is shown to perform better.
Many tasks in deep learning involve optimizing over the \emph{inputs} to a network to minimize or maximize some objective; examples include optimization over latent spaces in a generative model to match a target image, or adversarially perturbing an input to worsen classifier performance. Performing such optimization, however, is traditionally quite costly, as it involves a complete forward and backward pass through the network for each gradient step. In a separate line of work, a recent thread of research has developed the deep equilibrium (DEQ) model, a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer. In this paper, we show that there is a natural synergy between these two settings. Although, naively using DEQs for these optimization problems is expensive (owing to the time needed to compute a fixed point for each gradient step), we can leverage the fact that gradient-based optimization can \emph{itself} be cast as a fixed point iteration to substantially improve the overall speed. That is, we \emph{simultaneously} both solve for the DEQ fixed point \emph{and} optimize over network inputs, all within a single ``augmented'' DEQ model that jointly encodes both the original network and the optimization process. Indeed, the procedure is fast enough that it allows us to efficiently \emph{train} DEQ models for tasks traditionally relying on an ``inner'' optimization loop. We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
Approximate inference methods like the Laplace method, Laplace approximations and variational methods, amongst others, are popular methods when exact inference is not feasible due to the complexity of the model or the abundance of data. In this paper we propose a hybrid approximate method namely Low-Rank Variational Bayes correction (VBC), that uses the Laplace method and subsequently a Variational Bayes correction to the posterior mean. The cost is essentially that of the Laplace method which ensures scalability of the method. We illustrate the method and its advantages with simulated and real data, on small and large scale.
This paper presents a novel method for generating a single polynomial approximation that produces correctly rounded results for all inputs of an elementary function for multiple representations. The generated polynomial approximation has the nice property that the first few lower degree terms produce correctly rounded results for specific representations of smaller bitwidths, which we call progressive performance. To generate such progressive polynomial approximations, we approximate the correctly rounded result and formulate the computation of correctly rounded polynomial approximations as a linear program inspired by our RLibm project. In contrast to our prior work, we avoid storing large lookup tables for the polynomial coefficients. We observe that the problem of computing polynomial approximations to elementary functions is a linear programming problem in low dimensions, i.e., with a small number of unknowns. We design a fast randomized algorithm for efficiently computing polynomial approximations with progressive performance. Our method produces polynomial approximations that are faster than the RLibm project and other mainstream libraries while also having progressive performance.
This paper analyzes a necessary and sufficient condition for the change-making problem to be solvable with a greedy algorithm. The change-making problem is to minimize the number of coins used to pay a given value in a specified currency system. This problem is NP-hard, and therefore the greedy algorithm does not always yield an optimal solution. Yet for almost all real currency systems, the greedy algorithm outputs an optimal solution. A currency system for which the greedy algorithm returns an optimal solution for any value of payment is called a canonical system. Canonical systems with at most five types of coins have been characterized in previous studies. In this paper, we give characterization of canonical systems with six types of coins, and we propose a partial generalization of characterization of canonical systems.
We develop a generalized hybrid iterative approach for computing solutions to large-scale Bayesian inverse problems. We consider a hybrid algorithm based on the generalized Golub-Kahan bidiagonalization for computing Tikhonov regularized solutions to problems where explicit computation of the square root and inverse of the covariance kernel for the prior covariance matrix is not feasible. This is useful for large-scale problems where covariance kernels are defined on irregular grids or are only available via matrix-vector multiplication, e.g., those from the Mat\'{e}rn class. We show that iterates are equivalent to LSQR iterates applied to a directly regularized Tikhonov problem, after a transformation of variables, and we provide connections to a generalized singular value decomposition filtered solution. Our approach shares many benefits of standard hybrid methods such as avoiding semi-convergence and automatically estimating the regularization parameter. Numerical examples from image processing demonstrate the effectiveness of the described approaches.
Because of continuous advances in mathematical programing, Mix Integer Optimization has become a competitive vis-a-vis popular regularization method for selecting features in regression problems. The approach exhibits unquestionable foundational appeal and versatility, but also poses important challenges. We tackle these challenges, reducing computational burden when tuning the sparsity bound (a parameter which is critical for effectiveness) and improving performance in the presence of feature collinearity and of signals that vary in nature and strength. Importantly, we render the approach efficient and effective in applications of realistic size and complexity - without resorting to relaxations or heuristics in the optimization, or abandoning rigorous cross-validation tuning. Computational viability and improved performance in subtler scenarios is achieved with a multi-pronged blueprint, leveraging characteristics of the Mixed Integer Programming framework and by means of whitening, a data pre-processing step.