亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For smooth finite fields $F_q$ (i.e., when $q-1$ factors into small primes) the Fast Fourier Transform (FFT) leads to the fastest known algebraic algorithms for many basic polynomial operations, such as multiplication, division, interpolation and multi-point evaluation. However, the same operations over fields with no smooth order root of unity suffer from an asymptotic slowdown. The classical algorithm of Schonhage and Strassen incurred a multiplicative slowdown factor of $\log \log n$ on top of the smooth case. Recent remarkable results of Harvey, van der Hoeven and Lecerf dramatically reduced this multiplicative overhead to $\exp(\log^* (n))$. We introduce a new approach to fast algorithms for polynomial operations over all large finite fields. The key idea is to replace the group of roots of unity with a set of points $L \subset F$ suitably related to a well-chosen elliptic curve group (the set $L$ itself is not a group). The key advantage of this approach is that elliptic curve groups can be of any size in the Hasse-Weil interval $[q+1 \pm 2\sqrt{q}]$ and thus can have subgroups of large, smooth order, which an FFT-like divide and conquer algorithm can exploit. Compare this with multiplicative subgroups over whose order must divide $q-1$. For polynomials represented by their evaluation over subsets of $L$, we show that multiplication, division, degree-computation, interpolation, evaluation and Reed-Solomon encoding (also known as low-degree extension) with fixed evaluation points can all be computed with arithmetic circuits of size similar to what is achievable with the classical FFTs when the field size is special. For several problems, this yields the asymptotically smallest known arithmetic circuits even in the standard monomial representation of polynomials.

相關內容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存儲技術會議。 Publisher:USENIX。 SIT:

We show that the problem of determining the feasibility of quadratic systems over $\mathbb{C}$, $\mathbb{R}$, and $\mathbb{Z}$ requires exponential time. This separates P and NP over these fields/rings in the BCSS model of computation.

In a previous paper we have presented a CEGAR approach for the verification of parameterized systems with an arbitrary number of processes organized in an array or a ring. The technique is based on the iterative computation of parameterized invariants, i.e., infinite families of invariants for the infinitely many instances of the system. Safety properties are proved by checking that every global configuration of the system satisfying all parameterized invariants also satisfies the property; we have shown that this check can be reduced to the satisfiability problem for Monadic Second Order on words, which is decidable. A strong limitation of the approach is that processes can only have a fixed number of variables with a fixed finite range. In particular, they cannot use variables with range [0,N-1], where N is the number of processes, which appear in many standard distributed algorithms. In this paper, we extend our technique to this case. While conducting the check whether a safety property is inductive assuming a computed set of invariants becomes undecidable, we show how to reduce it to checking satisfiability of a first-order formula. We report on experiments showing that automatic first-order theorem provers can still perform this check for a collection of non-trivial examples. Additionally, we can give small sets of readable invariants for these checks.

The general adwords problem has remained largely unresolved. We define a subcase called {\em $k$-TYPICAL}, $k \in \Zplus$, as follows: the total budget of all the bidders is sufficient to buy $k$ bids for each bidder. This seems a reasonable assumption for a "typical" instance, at least for moderate values of $k$. We give a randomized online algorithm, achieving a competitive ratio of $\left(1 - {1 \over e} - {1 \over k} \right)$, for this problem. We also give randomized online algorithms for other special cases of adwords. Another subcase, when bids are small compared to budgets, has been of considerable practical significance in ad auctions \cite{MSVV}. For this case, we give an optimal randomized online algorithm achieving a competitive ratio of $\left(1 - {1 \over e} \right)$. Previous algorithms for this case were based on LP-duality; the impact of our new approach remains to be seen. The key to these results is a simplification of the proof for RANKING, the optimal algorithm for online bipartite matching, given in \cite{KVV}. Our algorithms for adwords can be seen as natural extensions of RANKING.

IIn computational geometry, the construction of essential primitives like convex hulls, Voronoi diagrams and Delaunay triangulations require the evaluation of the signs of determinants, which are sums of products. The same signs are needed for the exact solution of linear programming problems and systems of linear inequalities. Computing these signs exactly with inexact floating point arithmetic is challenging, and we present yet another algorithm for this task. Our algorithm is efficient and uses only of floating point arithmetic, which is much faster than exact arithmetic. We prove that the algorithm is correct and provide efficient and tested \texttt{C++} code for it.

We develop a class of mixed virtual volume methods for elliptic problems on polygonal/polyhedral grids. Unlike the mixed virtual element methods introduced in \cite{brezzi2014basic,da2016mixed}, our methods are reduced to symmetric, positive definite problems for the primary variable without using Lagrangian multipliers. We start from the usual way of changing the given equation into a mixed system using the Darcy's law, $\bu=-{\cal K} \nabla p$. By integrating the system of equations with some judiciously chosen test spaces on each element, we define new mixed virtual volume methods of all orders. We show that these new schemes are equivalent to the nonconforming virtual element methods for the primal variable $p$. Once the primary variable is computed solving the symmetric, positive definite system, all the degrees of freedom for the Darcy velocity are locally computed. Also, the $L^2$-projection onto the polynomial space is easy to compute. Hence our work opens an easy way to compute Darcy velocity on the polygonal/polyhedral grids. For the lowest order case, we give a formula to compute a Raviart-Thomas space like representation which satisfies the conservation law. An optimal error analysis is carried out and numerical results are presented which support the theory.

We introduce an original method of multidimensional ridge penalization in functional local linear regressions. The nonparametric regression of functional data is extended from its multivariate counterpart, and is known to be sensitive to the choice of $J$, where $J$ is the dimension of the projection subspace of the data. Under multivariate setting, a roughness penalty is helpful for variance reduction. However, among the limited works covering roughness penalty under the functional setting, most only use a single scalar for tuning. Our new approach proposes a class of data-adaptive ridge penalties, meaning that the model automatically adjusts the structure of the penalty according to the data sets. This structure has $J$ free parameters and enables a quadratic programming search for optimal tuning parameters that minimize the estimated mean squared error (MSE) of prediction, and is capable of applying different roughness penalty levels to each of the $J$ basis. The strength of the method in prediction accuracy and variance reduction with finite data is demonstrated through multiple simulation scenarios and two real-data examples. Its asymptotic performance is proved and compared to the unpenalized functional local linear regressions.

We establish higher-order expansions for a difference between probability distributions of sums of i.i.d. random vectors in a Euclidean space. The derived bounds are uniform over two classes of sets: the set of all Euclidean balls and the set of all half-spaces. These results allow to account for an impact of higher-order moments or cumulants of the considered distributions; the obtained error terms depend on a sample size and a dimension explicitly. The new inequalities outperform accuracy of the normal approximation in existing Berry--Esseen inequalities under very general conditions. For symmetrically distributed random summands, the obtained results are optimal in terms of the ratio between the dimension and the sample size. The new technique which we developed for establishing nonasymptotic higher-order expansions can be interesting by itself. Using the new higher-order inequalities, we study accuracy of the nonparametric bootstrap approximation and propose a bootstrap score test under possible model misspecification. The results of the paper also include explicit error bounds for general elliptical confidence regions for an expected value of the random summands, and optimality of the Gaussian anti-concentration inequality over the set of all Euclidean balls.

We present subquadratic algorithms in the algebraic decision-tree model for several \textsc{3Sum}-hard geometric problems, all of which can be reduced to the following question: Given two sets $A$, $B$, each consisting of $n$ pairwise disjoint segments in the plane, and a set $C$ of $n$ triangles in the plane, we want to count, for each triangle $\Delta\in C$, the number of intersection points between the segments of $A$ and those of $B$ that lie in $\Delta$. The problems considered in this paper have been studied by Chan~(2020), who gave algorithms that solve them, in the standard real-RAM model, in $O((n^2/\log^2n)\log^{O(1)}\log n)$ time. We present solutions in the algebraic decision-tree model whose cost is $O(n^{60/31+\varepsilon})$, for any $\varepsilon>0$. Our approach is based on a primal-dual range searching mechanism, which exploits the multi-level polynomial partitioning machinery recently developed by Agarwal, Aronov, Ezra, and Zahl~(2020). A key step in the procedure is a variant of point location in arrangements, say of lines in the plane, which is based solely on the \emph{order type} of the lines, a "handicap" that turns out to be beneficial for speeding up our algorithm.

We introduce "talking-heads attention" - a variation on multi-head attention which includes linearprojections across the attention-heads dimension, immediately before and after the softmax operation.While inserting only a small number of additional parameters and a moderate amount of additionalcomputation, talking-heads attention leads to better perplexities on masked language modeling tasks, aswell as better quality when transfer-learning to language comprehension and question answering tasks.

The availability of large microarray data has led to a growing interest in biclustering methods in the past decade. Several algorithms have been proposed to identify subsets of genes and conditions according to different similarity measures and under varying constraints. In this paper we focus on the exclusive row biclustering problem for gene expression data sets, in which each row can only be a member of a single bicluster while columns can participate in multiple ones. This type of biclustering may be adequate, for example, for clustering groups of cancer patients where each patient (row) is expected to be carrying only a single type of cancer, while each cancer type is associated with multiple (and possibly overlapping) genes (columns). We present a novel method to identify these exclusive row biclusters through a combination of existing biclustering algorithms and combinatorial auction techniques. We devise an approach for tuning the threshold for our algorithm based on comparison to a null model in the spirit of the Gap statistic approach. We demonstrate our approach on both synthetic and real-world gene expression data and show its power in identifying large span non-overlapping rows sub matrices, while considering their unique nature. The Gap statistic approach succeeds in identifying appropriate thresholds in all our examples.

北京阿比特科技有限公司