亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper discusses the different roles that explicit knowledge, in particular ontologies, can play in Explainable AI and in the development of human-centric explainable systems and intelligible explanations. We consider three main perspectives in which ontologies can contribute significantly, namely reference modelling, common-sense reasoning, and knowledge refinement and complexity management. We overview some of the existing approaches in the literature, and we position them according to these three proposed perspectives. The paper concludes by discussing what challenges still need to be addressed to enable ontology-based approaches to explanation and to evaluate their human-understandability and effectiveness.

相關內容

通過學習、實踐或探索所獲得的認識、判斷或技能。

Printed Electronics (PE) feature distinct and remarkable characteristics that make them a prominent technology for achieving true ubiquitous computing. This is particularly relevant in application domains that require conformal and ultra-low cost solutions, which have experienced limited penetration of computing until now. Unlike silicon-based technologies, PE offer unparalleled features such as non-recurring engineering costs, ultra-low manufacturing cost, and on-demand fabrication of conformal, flexible, non-toxic, and stretchable hardware. However, PE face certain limitations due to their large feature sizes, that impede the realization of complex circuits, such as machine learning classifiers. In this work, we address these limitations by leveraging the principles of Approximate Computing and Bespoke (fully-customized) design. We propose an automated framework for designing ultra-low power Multilayer Perceptron (MLP) classifiers which employs, for the first time, a holistic approach to approximate all functions of the MLP's neurons: multiplication, accumulation, and activation. Through comprehensive evaluation across various MLPs of varying size, our framework demonstrates the ability to enable battery-powered operation of even the most intricate MLP architecture examined, significantly surpassing the current state of the art.

Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications. As LLMs continue to play a vital role in both research and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the society level for better understanding of their potential risks. Over the past years, significant efforts have been made to examine LLMs from various perspectives. This paper presents a comprehensive review of these evaluation methods for LLMs, focusing on three key dimensions: what to evaluate, where to evaluate, and how to evaluate. Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general natural language processing tasks, reasoning, medical usage, ethics, educations, natural and social sciences, agent applications, and other areas. Secondly, we answer the `where' and `how' questions by diving into the evaluation methods and benchmarks, which serve as crucial components in assessing performance of LLMs. Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that evaluation should be treated as an essential discipline to better assist the development of LLMs. We consistently maintain the related open-source materials at: //github.com/MLGroupJLU/LLM-eval-survey.

Every major technical invention resurfaces the dual-use dilemma -- the new technology has the potential to be used for good as well as for harm. Generative AI (GenAI) techniques, such as large language models (LLMs) and diffusion models, have shown remarkable capabilities (e.g., in-context learning, code-completion, and text-to-image generation and editing). However, GenAI can be used just as well by attackers to generate new attacks and increase the velocity and efficacy of existing attacks. This paper reports the findings of a workshop held at Google (co-organized by Stanford University and the University of Wisconsin-Madison) on the dual-use dilemma posed by GenAI. This paper is not meant to be comprehensive, but is rather an attempt to synthesize some of the interesting findings from the workshop. We discuss short-term and long-term goals for the community on this topic. We hope this paper provides both a launching point for a discussion on this important topic as well as interesting problems that the research community can work to address.

Traffic accidents are one of the biggest challenges in a society where commuting is so important. What triggers an accident can be dependent on several subjective parameters and varies within each region, city, or country. In the same way, it is important to understand those parameters in order to provide a knowledge basis to support decisions regarding future cases prevention. The literature presents several works where machine learning algorithms are used for prediction of accidents or severity of accidents, in which city-level datasets were used as evaluation studies. This work attempts to add to the diversity of research, by focusing mainly on concentration of accidents and how machine learning can be used to predict hotspots. This approach demonstrated to be a useful technique for authorities to understand nuances of accident concentration behavior. For the first time, data from the Federal District of Brazil collected from forensic traffic accident analysts were used and combined with data from local weather conditions to predict hotspots of collisions. Out of the five algorithms we considered, two had good performance: Multi-layer Perceptron and Random Forest, with the latter being the best one at 98% accuracy. As a result, we identify that weather parameters are not as important as the accident location, demonstrating that local intervention is important to reduce the number of accidents.

Decision-Focused Learning (DFL) is an emerging learning paradigm that tackles the task of training a machine learning (ML) model to predict missing parameters of an incomplete optimization problem, where the missing parameters are predicted. DFL trains an ML model in an end-to-end system, by integrating the prediction and optimization tasks, providing better alignment of the training and testing objectives. DFL has shown a lot of promise and holds the capacity to revolutionize decision-making in many real-world applications. However, very little is known about the performance of these models under adversarial attacks. We adopt ten unique DFL methods and benchmark their performance under two distinctly focused attacks adapted towards the Predict-then-Optimize problem setting. Our study proposes the hypothesis that the robustness of a model is highly correlated with its ability to find predictions that lead to optimal decisions without deviating from the ground-truth label. Furthermore, we provide insight into how to target the models that violate this condition and show how these models respond differently depending on the achieved optimality at the end of their training cycles.

Recent research has extended beyond assessing the performance of Large Language Models (LLMs) to examining their characteristics from a psychological standpoint, acknowledging the necessity of understanding their behavioral characteristics. The administration of personality tests to LLMs has emerged as a noteworthy area in this context. However, the suitability of employing psychological scales, initially devised for humans, on LLMs is a matter of ongoing debate. Our study aims to determine the reliability of applying personality assessments to LLMs, explicitly investigating whether LLMs demonstrate consistent personality traits. Analyzing responses under 2,500 settings reveals that gpt-3.5-turbo shows consistency in responses to the Big Five Inventory, indicating a high degree of reliability. Furthermore, our research explores the potential of gpt-3.5-turbo to emulate diverse personalities and represent various groups, which is a capability increasingly sought after in social sciences for substituting human participants with LLMs to reduce costs. Our findings reveal that LLMs have the potential to represent different personalities with specific prompt instructions. By shedding light on the personalization of LLMs, our study endeavors to pave the way for future explorations in this field. We have made our experimental results and the corresponding code openly accessible via //github.com/CUHK-ARISE/LLMPersonality.

This study evaluates the performance of large language models, specifically GPT-3.5 and BARD (supported by Gemini Pro model), in undergraduate admissions exams proposed by the National Polytechnic Institute in Mexico. The exams cover Engineering/Mathematical and Physical Sciences, Biological and Medical Sciences, and Social and Administrative Sciences. Both models demonstrated proficiency, exceeding the minimum acceptance scores for respective academic programs to up to 75% for some academic programs. GPT-3.5 outperformed BARD in Mathematics and Physics, while BARD performed better in History and questions related to factual information. Overall, GPT-3.5 marginally surpassed BARD with scores of 60.94% and 60.42%, respectively.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

北京阿比特科技有限公司