Effective fusion of multi-scale features is crucial for improving speaker verification performance. While most existing methods aggregate multi-scale features in a layer-wise manner via simple operations, such as summation or concatenation. This paper proposes a novel architecture called Enhanced Res2Net (ERes2Net), which incorporates both local and global feature fusion techniques to improve the performance. The local feature fusion (LFF) fuses the features within one single residual block to extract the local signal. The global feature fusion (GFF) takes acoustic features of different scales as input to aggregate global signal. To facilitate effective feature fusion in both LFF and GFF, an attentional feature fusion module is employed in the ERes2Net architecture, replacing summation or concatenation operations. A range of experiments conducted on the VoxCeleb datasets demonstrate the superiority of the ERes2Net in speaker verification.
Hyperspectral images (HSI) with abundant spectral information reflected materials property usually perform low spatial resolution due to the hardware limits. Meanwhile, multispectral images (MSI), e.g., RGB images, have a high spatial resolution but deficient spectral signatures. Hyperspectral and multispectral image fusion can be cost-effective and efficient for acquiring both high spatial resolution and high spectral resolution images. Many of the conventional HSI and MSI fusion algorithms rely on known spatial degradation parameters, i.e., point spread function, spectral degradation parameters, spectral response function, or both of them. Another class of deep learning-based models relies on the ground truth of high spatial resolution HSI and needs large amounts of paired training images when working in a supervised manner. Both of these models are limited in practical fusion scenarios. In this paper, we propose an unsupervised HSI and MSI fusion model based on the cycle consistency, called CycFusion. The CycFusion learns the domain transformation between low spatial resolution HSI (LrHSI) and high spatial resolution MSI (HrMSI), and the desired high spatial resolution HSI (HrHSI) are considered to be intermediate feature maps in the transformation networks. The CycFusion can be trained with the objective functions of marginal matching in single transform and cycle consistency in double transforms. Moreover, the estimated PSF and SRF are embedded in the model as the pre-training weights, which further enhances the practicality of our proposed model. Experiments conducted on several datasets show that our proposed model outperforms all compared unsupervised fusion methods. The codes of this paper will be available at this address: https: //github.com/shuaikaishi/CycFusion for reproducibility.
Deep learning is also known as hierarchical learning, where the learner _learns_ to represent a complicated target function by decomposing it into a sequence of simpler functions to reduce sample and time complexity. This paper formally analyzes how multi-layer neural networks can perform such hierarchical learning _efficiently_ and _automatically_ by SGD on the training objective. On the conceptual side, we present a theoretical characterizations of how certain types of deep (i.e. super-constant layer) neural networks can still be sample and time efficiently trained on some hierarchical tasks, when no existing algorithm (including layerwise training, kernel method, etc) is known to be efficient. We establish a new principle called "backward feature correction", where the errors in the lower-level features can be automatically corrected when training together with the higher-level layers. We believe this is a key behind how deep learning is performing deep (hierarchical) learning, as opposed to layerwise learning or simulating some non-hierarchical method. On the technical side, we show for every input dimension $d > 0$, there is a concept class of degree $\omega(1)$ multi-variate polynomials so that, using $\omega(1)$-layer neural networks as learners, SGD can learn any function from this class in $\mathsf{poly}(d)$ time to any $\frac{1}{\mathsf{poly}(d)}$ error, through learning to represent it as a composition of $\omega(1)$ layers of quadratic functions using "backward feature correction." In contrast, we do not know any other simpler algorithm (including layerwise training, applying kernel method sequentially, training a two-layer network, etc) that can learn this concept class in $\mathsf{poly}(d)$ time even to any $d^{-0.01}$ error. As a side result, we prove $d^{\omega(1)}$ lower bounds for several non-hierarchical learners, including any kernel methods.
Remote sensing image super-resolution (RSISR) plays a vital role in enhancing spatial detials and improving the quality of satellite imagery. Recently, Transformer-based models have shown competitive performance in RSISR. To mitigate the quadratic computational complexity resulting from global self-attention, various methods constrain attention to a local window, enhancing its efficiency. Consequently, the receptive fields in a single attention layer are inadequate, leading to insufficient context modeling. Furthermore, while most transform-based approaches reuse shallow features through skip connections, relying solely on these connections treats shallow and deep features equally, impeding the model's ability to characterize them. To address these issues, we propose a novel transformer architecture called Cross-Spatial Pixel Integration and Cross-Stage Feature Fusion Based Transformer Network (SPIFFNet) for RSISR. Our proposed model effectively enhances global cognition and understanding of the entire image, facilitating efficient integration of features cross-stages. The model incorporates cross-spatial pixel integration attention (CSPIA) to introduce contextual information into a local window, while cross-stage feature fusion attention (CSFFA) adaptively fuses features from the previous stage to improve feature expression in line with the requirements of the current stage. We conducted comprehensive experiments on multiple benchmark datasets, demonstrating the superior performance of our proposed SPIFFNet in terms of both quantitative metrics and visual quality when compared to state-of-the-art methods.
Recent advances in vision transformers (ViTs) have achieved great performance in visual recognition tasks. Convolutional neural networks (CNNs) exploit spatial inductive bias to learn visual representations, but these networks are spatially local. ViTs can learn global representations with their self-attention mechanism, but they are usually heavy-weight and unsuitable for mobile devices. In this paper, we propose cross feature attention (XFA) to bring down computation cost for transformers, and combine efficient mobile CNNs to form a novel efficient light-weight CNN-ViT hybrid model, XFormer, which can serve as a general-purpose backbone to learn both global and local representation. Experimental results show that XFormer outperforms numerous CNN and ViT-based models across different tasks and datasets. On ImageNet1K dataset, XFormer achieves top-1 accuracy of 78.5% with 5.5 million parameters, which is 2.2% and 6.3% more accurate than EfficientNet-B0 (CNN-based) and DeiT (ViT-based) for similar number of parameters. Our model also performs well when transferring to object detection and semantic segmentation tasks. On MS COCO dataset, XFormer exceeds MobileNetV2 by 10.5 AP (22.7 -> 33.2 AP) in YOLOv3 framework with only 6.3M parameters and 3.8G FLOPs. On Cityscapes dataset, with only a simple all-MLP decoder, XFormer achieves mIoU of 78.5 and FPS of 15.3, surpassing state-of-the-art lightweight segmentation networks.
The paper introduces Diff-Filter, a multichannel speech enhancement approach based on the diffusion probabilistic model, for improving speaker verification performance under noisy and reverberant conditions. It also presents a new two-step training procedure that takes the benefit of self-supervised learning. In the first stage, the Diff-Filter is trained by conducting timedomain speech filtering using a scoring-based diffusion model. In the second stage, the Diff-Filter is jointly optimized with a pre-trained ECAPA-TDNN speaker verification model under a self-supervised learning framework. We present a novel loss based on equal error rate. This loss is used to conduct selfsupervised learning on a dataset that is not labelled in terms of speakers. The proposed approach is evaluated on MultiSV, a multichannel speaker verification dataset, and shows significant improvements in performance under noisy multichannel conditions.
Representation learning has become a crucial area of research in machine learning, as it aims to discover efficient ways of representing raw data with useful features to increase the effectiveness, scope and applicability of downstream tasks such as classification and prediction. In this paper, we propose a novel method to generate representations for time series-type data. This method relies on ideas from theoretical physics to construct a compact representation in a data-driven way, and it can capture both the underlying structure of the data and task-specific information while still remaining intuitive, interpretable and verifiable. This novel methodology aims to identify linear laws that can effectively capture a shared characteristic among samples belonging to a specific class. By subsequently utilizing these laws to generate a classifier-agnostic representation in a forward manner, they become applicable in a generalized setting. We demonstrate the effectiveness of our approach on the task of ECG signal classification, achieving state-of-the-art performance.
3D speech enhancement can effectively improve the auditory experience and plays a crucial role in augmented reality technology. However, traditional convolutional-based speech enhancement methods have limitations in extracting dynamic voice information. In this paper, we incorporate a dual-path recurrent neural network block into the U-Net to iteratively extract dynamic audio information in both the time and frequency domains. And an attention mechanism is proposed to fuse the original signal, reference signal, and generated masks. Moreover, we introduce a loss function to simultaneously optimize the network in the time-frequency and time domains. Experimental results show that our system outperforms the state-of-the-art systems on the dataset of ICASSP L3DAS23 challenge.
While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.
A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.
Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.