亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper develops a data-based approach to the closed-loop output feedback control of nonlinear dynamical systems with a partial nonlinear observation model. We propose an information state based approach to rigorously transform the partially observed problem into a fully observed problem where the information state consists of the past several observations and control inputs. We further show the equivalence of the transformed and the initial partially observed optimal control problems and provide the conditions to solve for the deterministic optimal solution. We develop a data based generalization of the iterative Linear Quadratic Regulator (iLQR) to partially observed systems using a local linear time varying model of the information state dynamics approximated by an Autoregressive moving average (ARMA) model, that is generated using only the input-output data. This open-loop trajectory optimization solution is then used to design a local feedback control law, and the composite law then provides an optimum solution to the partially observed feedback design problem. The efficacy of the developed method is shown by controlling complex high dimensional nonlinear dynamical systems in the presence of model and sensing uncertainty.

相關內容

This paper explores the space of optimizing feedback mechanisms in complex domains, such as data science, by combining two prevailing approaches: Artificial Intelligence (AI) and learnersourcing. Towards addressing the challenges posed by each approach, this work compares traditional learnersourcing with an AI-supported approach. We report on the results of a randomized controlled experiment conducted with 72 Master's level students in a data visualization course, comparing two conditions: students writing hints independently versus revising hints generated by GPT-4. The study aimed to evaluate the quality of learnersourced hints, examine the impact of student performance on hint quality, gauge learner preference for writing hints with or without AI support, and explore the potential of the student-AI collaborative exercise in fostering critical thinking about LLMs. Based on our findings, we provide insights for designing learnersourcing activities leveraging AI support and optimizing students' learning as they interact with LLMs.

The paper develops a methodology to enable microscopic models of transportation systems to be accessible for a statistical study of traffic accidents. Our approach is intended to permit an understanding not only of historical losses, but also of incidents that may occur in altered, potential future systems. Through such a counterfactual analysis, it is possible, from an insurance, but also from an engineering perspective, to assess the impact of changes in the design of vehicles and transport systems in terms of their impact on road safety and functionality. Structurally, we characterize the total loss distribution approximatively as a mean-variance mixture. This also yields valuation procedures that can be used instead of Monte Carlo simulation. Specifically, we construct an implementation based on the open-source traffic simulator SUMO and illustrate the potential of the approach in counterfactual case studies.

Automatic pavement crack detection is an important task to ensure the functional performances of pavements during their service life. Inspired by deep learning (DL), the encoder-decoder framework is a powerful tool for crack detection. However, these models are usually open-loop (OL) systems that tend to treat thin cracks as the background. Meanwhile, these models can not automatically correct errors in the prediction, nor can it adapt to the changes of the environment to automatically extract and detect thin cracks. To tackle this problem, we embed closed-loop feedback (CLF) into the neural network so that the model could learn to correct errors on its own, based on generative adversarial networks (GAN). The resulting model is called CrackCLF and includes the front and back ends, i.e. segmentation and adversarial network. The front end with U-shape framework is employed to generate crack maps, and the back end with a multi-scale loss function is used to correct higher-order inconsistencies between labels and crack maps (generated by the front end) to address open-loop system issues. Empirical results show that the proposed CrackCLF outperforms others methods on three public datasets. Moreover, the proposed CLF can be defined as a plug and play module, which can be embedded into different neural network models to improve their performances.

The paper advocates for LLMs to enhance the accessibility, usage and explainability of rule-based legal systems, contributing to a democratic and stakeholder-oriented view of legal technology. A methodology is developed to explore the potential use of LLMs for translating the explanations produced by rule-based systems, from high-level programming languages to natural language, allowing all users a fast, clear, and accessible interaction with such technologies. The study continues by building upon these explanations to empower laypeople with the ability to execute complex juridical tasks on their own, using a Chain of Prompts for the autonomous legal comparison of different rule-based inferences, applied to the same factual case.

This paper investigates an emerging cache side channel attack defense approach involving the use of hardware performance counters (HPCs). These counters monitor microarchitectural events and analyze statistical deviations to differentiate between malicious and benign software. With numerous proposals and promising reported results, we seek to investigate whether published HPC-based detection methods are evaluated in a proper setting and under the right assumptions, such that their quality can be ensured for real-word deployment against cache side-channel attacks. To achieve this goal, this paper presents a comprehensive evaluation and scrutiny of existing literature on the subject matter in a form of a survey, accompanied by experimental evidences to support our evaluation.

This paper addresses the challenging scheduling problem of coflows with release times, with the objective of minimizing the total weighted completion time. Previous literature has predominantly concentrated on establishing the scheduling order of coflows. In advancing this research, we contribute by optimizing performance through the determination of the flow scheduling order. The proposed approximation algorithm achieves approximation ratios of $3$ and $2+\frac{1}{LB}$ for arbitrary and zero release times, respectively, where $LB$ is the minimum lower bound of coflow completion time. To further improve time complexity, we streamline linear programming by employing interval-indexed relaxation, thereby reducing the number of variables. As a result, for $\epsilon>0$, the approximation algorithm achieves approximation ratios of $3 + \epsilon$ and $2 + \epsilon$ for arbitrary and zero release times, respectively. Notably, these advancements surpass the previously best-known approximation ratios of 5 and 4 for arbitrary and zero release times, respectively, as established by Shafiee and Ghaderi.

This paper investigates a multiuser millimeter-wave (mmWave) uplink system in which each user is equipped with a multi-antenna fluid antenna system (FAS) while the base station (BS) has multiple fixed-position antennas. Our primary objective is to maximize the system capacity by optimizing the transmit covariance matrices and the antenna position vectors of the users jointly. To gain deeper insights, we commence by deriving upper bounds and approximations for the maximum capacity. Then we delve into the capacity maximization problem. Beginning with the simple scenario of a single user equipped with a single-antenna FAS, we reveal that a closed-form optimal solution exists when there are only two propagation paths between the user and the BS. In the case where multiple propagation paths are present, a near-optimal solution can be obtained through a one-dimensional search method. Expanding our focus to multiuser cases, where users are equipped with either single- or multi-antenna FAS, we show that the original capacity maximization problems can be reformulated into distinct rank-one programmings. Then, we propose alternating optimization algorithms to deal with the transformed problems. Simulation results indicate that FAS can improve the capacity of the multiple access (MAC) system greatly, and the proposed algorithms outperform all the benchmarks.

The traditional recommendation framework seeks to connect user and content, by finding the best match possible based on users past interaction. However, a good content recommendation is not necessarily similar to what the user has chosen in the past. As humans, users naturally evolve, learn, forget, get bored, they change their perspective of the world and in consequence, of the recommendable content. One well known mechanism that affects user interest is the Mere Exposure Effect: when repeatedly exposed to stimuli, users' interest tends to rise with the initial exposures, reaching a peak, and gradually decreasing thereafter, resulting in an inverted-U shape. Since previous research has shown that the magnitude of the effect depends on a number of interesting factors such as stimulus complexity and familiarity, leveraging this effect is a way to not only improve repeated recommendation but to gain a more in-depth understanding of both users and stimuli. In this work we present (Mere) Exposure2Vec (Ex2Vec) our model that leverages the Mere Exposure Effect in repeat consumption to derive user and item characterization and track user interest evolution. We validate our model through predicting future music consumption based on repetition and discuss its implications for recommendation scenarios where repetition is common.

This paper proposes a recommender system to alleviate the cold-start problem that can estimate user preferences based on only a small number of items. To identify a user's preference in the cold state, existing recommender systems, such as Netflix, initially provide items to a user; we call those items evidence candidates. Recommendations are then made based on the items selected by the user. Previous recommendation studies have two limitations: (1) the users who consumed a few items have poor recommendations and (2) inadequate evidence candidates are used to identify user preferences. We propose a meta-learning-based recommender system called MeLU to overcome these two limitations. From meta-learning, which can rapidly adopt new task with a few examples, MeLU can estimate new user's preferences with a few consumed items. In addition, we provide an evidence candidate selection strategy that determines distinguishing items for customized preference estimation. We validate MeLU with two benchmark datasets, and the proposed model reduces at least 5.92% mean absolute error than two comparative models on the datasets. We also conduct a user study experiment to verify the evidence selection strategy.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司