亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Two important problems on almost perfect nonlinear (APN) functions are the enumeration and equivalence problems. In this paper, we solve these two problems for any biprojective APN function family by introducing a strong group theoretic method for those functions. Roughly half of the known APN families of functions on even dimensions are biprojective. By our method, we settle the equivalence problem for all known biprojective APN functions. Furthermore, we give a new family of biprojective APN functions. Using our method, we count the number of inequivalent APN functions in all known biprojective APN families and show that the new family found in this paper gives exponentially many new inequivalent APN functions. Quite recently, the Taniguchi family of APN functions was shown to contain an exponential number of inequivalent APN functions by Kaspers and Zhou (J. Cryptol. 34 (1), 2021) which improved their previous count (J. Comb. Th. A 186, 2022) for the Zhou-Pott family. Our group theoretic method substantially simplifies the work required for proving those results and provides a generic natural method for every family in the large super-class of biprojective APN functions that contains these two family along with many others.

相關內容

In this paper, we introduce a general numerical method to approximate the reproduction numbers of a large class of multi-group, age-structured, population models with a finite age span. To provide complete flexibility in the definition of the birth and transition processes, we propose an equivalent formulation for the age-integrated state within the extended space framework. Then, we discretize the birth and transition operators via pseudospectral collocation. We discuss applications to epidemic models with continuous and piecewise continuous rates, with different interpretations of the age variable (e.g., demographic age, infection age and disease age) and the transmission terms (e.g., horizontal and vertical transmission). The tests illustrate that the method can compute different reproduction numbers, including the basic and type reproduction numbers as special cases.

This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial values, the regularity of the mild solution is investigated, and an error estimate is derived with the spatial $ L^2 $-norm. For smooth initial values, two error estimates with the general spatial $ L^q $-norms are established.

In this article, the stabilizer free weak Galerkin (SFWG) finite element method is applied to the Ciarlet-Raviart mixed form of the Biharmonic equation. We utilize the SFWG solutions of the second elliptic problems to define projection operators, build error equations, and further derive the error estimates. Finally, numerical examples support the results reached by the theory.

In this paper, we introduce a framework for the discretization of a class of constrained Hamilton-Jacobi equations, a system coupling a Hamilton-Jacobi equation with a Lagrange multiplier determined by the constraint. The equation is non-local, and the constraint has bounded variations. We show that, under a set of general hypothesis, the approximation obtained with a finite-differences monotonic scheme, converges towards the viscosity solution of the constrained Hamilton-Jacobi equation. Constrained Hamilton-Jacobi equations often arise as the long time and small mutation asymptotics of population models in quantitative genetics. As an example, we detail the construction of a scheme for the limit of an integral Lotka-Volterra equation. We also construct and analyze an Asymptotic-Preserving (AP) scheme for the model outside of the asymptotics. We prove that it is stable along the transition towards the asymptotics. The theoretical analysis of the schemes is illustrated and discussed with numerical simulations. The AP scheme is also used to conjecture the asymptotic behavior of the integral Lotka-Volterra equation, when the environment varies in time.

In this paper we apply the stochastic variance reduced gradient (SVRG) method, which is a popular variance reduction method in optimization for accelerating the stochastic gradient method, to solve large scale linear ill-posed systems in Hilbert spaces. Under {\it a priori} choices of stopping indices, we derive a convergence rate result when the sought solution satisfies a benchmark source condition and establish a convergence result without using any source condition. To terminate the method in an {\it a posteriori} manner, we consider the discrepancy principle and show that it terminates the method in finite many iteration steps almost surely. Various numerical results are reported to test the performance of the method.

In this paper, we follow the physics guided modeling approach and integrate a neural differential equation network into the physical structure of a vehicle single track model. By relying on the kinematic relations of the single track ordinary differential equations (ODE), a small neural network and few training samples are sufficient to substantially improve the model accuracy compared with a pure physics based vehicle single track model. To be more precise, the sum of squared error is reduced by 68% in the considered scenario. In addition, it is demonstrated that the prediction capabilities of the physics guided neural ODE model are superior compared with a pure black box neural differential equation approach.

Adaptiveness is a key principle in information processing including statistics and machine learning. We investigate the usefulness of adaptive methods in the framework of asymptotic binary hypothesis testing, when each hypothesis represents asymptotically many independent instances of a quantum channel, and the tests are based on using the unknown channel and observing outputs. Unlike the familiar setting of quantum states as hypotheses, there is a fundamental distinction between adaptive and non-adaptive strategies with respect to the channel uses, and we introduce a number of further variants of the discrimination tasks by imposing different restrictions on the test strategies. The following results are obtained: (1) We prove that for classical-quantum channels, adaptive and non-adaptive strategies lead to the same error exponents both in the symmetric (Chernoff) and asymmetric (Hoeffding, Stein) settings. (2) The first separation between adaptive and non-adaptive symmetric hypothesis testing exponents for quantum channels, which we derive from a general lower bound on the error probability for non-adaptive strategies; the concrete example we analyze is a pair of entanglement-breaking channels. (3)We prove, in some sense generalizing the previous statement, that for general channels adaptive strategies restricted to classical feed-forward and product state channel inputs are not superior in the asymptotic limit to non-adaptive product state strategies. (4) As an application of our findings, we address the discrimination power of an arbitrary quantum channel and show that adaptive strategies with classical feedback and no quantum memory at the input do not increase the discrimination power of the channel beyond non-adaptive tensor product input strategies.

We establish an invariance principle for polynomial functions of $n$ independent high-dimensional random vectors, and also show that the obtained rates are nearly optimal. Both the dimension of the vectors and the degree of the polynomial are permitted to grow with $n$. Specifically, we obtain a finite sample upper bound for the error of approximation by a polynomial of Gaussians, measured in Kolmogorov distance, and extend it to functions that are approximately polynomial in a mean squared error sense. We give a corresponding lower bound that shows the invariance principle holds up to polynomial degree $o(\log n)$. The proof is constructive and adapts an asymmetrisation argument due to V. V. Senatov. As applications, we obtain a higher-order delta method with possibly non-Gaussian limits, and generalise a number of known results on high-dimensional and infinite-order U-statistics, and on fluctuations of subgraph counts.

In this paper, we study the well-posedness and regularity of non-autonomous stochastic differential algebraic equations (SDAEs) with nonlinear, locally Lipschitz and monotone (2) coefficients of the form (1). The main difficulty is the fact that the operator A(.) is non-autonomous, i.~e. depends on t and the matrix $A(t)$ is singular for all $t\in \left[0,T\right]$. Our interest is in SDAE of index-1. This means that in order to solve the problem, we can transform the initial SDAEs into an ordinary stochastic differential equation with algebraic constraints. Under appropriate hypothesizes, the main result establishes the existence and uniqueness of the solution in $\mathcal{M}^p(\left[0, T\right], \mathbb{R}^n)$, $p\geq 2$, $p\in \mathbb{N}$. Several strong estimations and regularity results are also provided. Note that, in this paper, we use various techniques such as It\^o's lemma, Burkholder-Davis-Gundy inequality, and Young inequality.

Confidence intervals based on the central limit theorem (CLT) are a cornerstone of classical statistics. Despite being only asymptotically valid, they are ubiquitous because they permit statistical inference under weak assumptions and can often be applied to problems even when nonasymptotic inference is impossible. This paper introduces time-uniform analogues of such asymptotic confidence intervals, adding to the literature on confidence sequences (CS) -- sequences of confidence intervals that are uniformly valid over time -- which provide valid inference at arbitrary stopping times and incur no penalties for "peeking" at the data, unlike classical confidence intervals which require the sample size to be fixed in advance. Existing CSs in the literature are nonasymptotic, enjoying finite-sample guarantees but not the aforementioned broad applicability of asymptotic confidence intervals. This work provides a definition for "asymptotic CSs" and a general recipe for deriving them. Asymptotic CSs forgo nonasymptotic validity for CLT-like versatility and (asymptotic) time-uniform guarantees. While the CLT approximates the distribution of a sample average by that of a Gaussian for a fixed sample size, we use strong invariance principles (stemming from the seminal 1960s work of Strassen) to uniformly approximate the entire sample average process by an implicit Gaussian process. As an illustration, we derive asymptotic CSs for the average treatment effect in observational studies (for which nonasymptotic bounds are essentially impossible to derive even in the fixed-time regime) as well as randomized experiments, enabling causal inference in sequential environments.

北京阿比特科技有限公司