亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

LiDAR-generated point clouds are crucial for perceiving outdoor environments. The segmentation of point clouds is also essential for many applications. Previous research has focused on using self-attention and convolution (local attention) mechanisms individually in semantic segmentation architectures. However, there is limited work on combining the learned representations of these attention mechanisms to improve performance. Additionally, existing research that combines convolution with self-attention relies on global attention, which is not practical for processing large point clouds. To address these challenges, this study proposes a new architecture, pCTFusion, which combines kernel-based convolutions and self-attention mechanisms for better feature learning and capturing local and global dependencies in segmentation. The proposed architecture employs two types of self-attention mechanisms, local and global, based on the hierarchical positions of the encoder blocks. Furthermore, the existing loss functions do not consider the semantic and position-wise importance of the points, resulting in reduced accuracy, particularly at sharp class boundaries. To overcome this, the study models a novel attention-based loss function called Pointwise Geometric Anisotropy (PGA), which assigns weights based on the semantic distribution of points in a neighborhood. The proposed architecture is evaluated on SemanticKITTI outdoor dataset and showed a 5-7% improvement in performance compared to the state-of-the-art architectures. The results are particularly encouraging for minor classes, often misclassified due to class imbalance, lack of space, and neighbor-aware feature encoding. These developed methods can be leveraged for the segmentation of complex datasets and can drive real-world applications of LiDAR point cloud.

相關內容

Unmanned aerial vehicles (UAVs) are capable of surveying expansive areas, but their operational range is constrained by limited battery capacity. The deployment of mobile recharging stations using unmanned ground vehicles (UGVs) significantly extends the endurance and effectiveness of UAVs. However, optimizing the routes of both UAVs and UGVs, known as the UAV-UGV cooperative routing problem, poses substantial challenges, particularly with respect to the selection of recharging locations. Here in this paper, we leverage reinforcement learning (RL) for the purpose of identifying optimal recharging locations while employing constraint programming to determine cooperative routes for the UAV and UGV. Our proposed framework is then benchmarked against a baseline solution that employs Genetic Algorithms (GA) to select rendezvous points. Our findings reveal that RL surpasses GA in terms of reducing overall mission time, minimizing UAV-UGV idle time, and mitigating energy consumption for both the UAV and UGV. These results underscore the efficacy of incorporating heuristics to assist RL, a method we refer to as heuristics-assisted RL, in generating high-quality solutions for intricate routing problems.

By utilizing global navigation satellite system (GNSS) position and velocity measurements, the fusion between the GNSS and the inertial navigation system provides accurate and robust navigation information. When considering land vehicles,like autonomous ground vehicles,off-road vehicles or mobile robots,a GNSS-based heading angle measurement can be obtained and used in parallel to the position measurement to bound the heading angle drift. Yet, at low vehicle speeds (less than 2m/s) such a model-based heading measurement fails to provide satisfactory performance. This paper proposes GHNet, a deep-learning framework capable of accurately regressing the heading angle for vehicles operating at low speeds. We demonstrate that GHNet outperforms the current model-based approach for simulation and experimental datasets.

In recent years, the transition to cloud-based platforms in the IT sector has emphasized the significance of cloud incident root cause analysis to ensure service reliability and maintain customer trust. Central to this process is the efficient determination of root causes, a task made challenging due to the complex nature of contemporary cloud infrastructures. Despite the proliferation of AI-driven tools for root cause identification, their applicability remains limited by the inconsistent quality of their outputs. This paper introduces a method for enhancing confidence estimation in root cause analysis tools by prompting retrieval-augmented large language models (LLMs). This approach operates in two phases. Initially, the model evaluates its confidence based on historical incident data, considering its assessment of the evidence strength. Subsequently, the model reviews the root cause generated by the predictor. An optimization step then combines these evaluations to determine the final confidence assignment. Experimental results illustrate that our method enables the model to articulate its confidence effectively, providing a more calibrated score. We address research questions evaluating the ability of our method to produce calibrated confidence scores using LLMs, the impact of domain-specific retrieved examples on confidence estimates, and its potential generalizability across various root cause analysis models. Through this, we aim to bridge the confidence estimation gap, aiding on-call engineers in decision-making and bolstering the efficiency of cloud incident management.

More and more latency-sensitive services and applications are being deployed into the data center. Performance can be limited by the high latency of the network interconnect. Because the conventional network stack is designed not only for LAN, but also for WAN, it carries a great amount of redundancy that is not required in a data center network. This paper introduces the concept of a three-layer protocol stack that can fulfill the exact demands of data center network communications. The detailed design and implementation of the first layer of the stack, which we call RIFL, is presented. A novel low latency in-band hop-by-hop re-transmission protocol is proposed and adopted in RIFL, which guarantees lossless transmission in a data center environment. Experimental results show that RIFL achieves 110 nanoseconds point-to-point latency on 10-meter Active Optical Cables, at a line rate of 112 Gbps. RIFL is a multi-lane protocol with scalable throughput up to multi-hundred gigabits per second. It can be the enabler of low latency, high throughput, flexible, scalable, and lossless data center networks.

Laser-scanned point clouds of forests make it possible to extract valuable information for forest management. To consider single trees, a forest point cloud needs to be segmented into individual tree point clouds. Existing segmentation methods are usually based on hand-crafted algorithms, such as identifying trunks and growing trees from them, and face difficulties in dense forests with overlapping tree crowns. In this study, we propose \mbox{TreeLearn}, a deep learning-based approach for semantic and instance segmentation of forest point clouds. Unlike previous methods, TreeLearn is trained on already segmented point clouds in a data-driven manner, making it less reliant on predefined features and algorithms. Additionally, we introduce a new manually segmented benchmark forest dataset containing 156 full trees, and 79 partial trees, that have been cleanly segmented by hand. This enables the evaluation of instance segmentation performance going beyond just evaluating the detection of individual trees. We trained TreeLearn on forest point clouds of 6665 trees, labeled using the Lidar360 software. An evaluation on the benchmark dataset shows that TreeLearn performs equally well or better than the algorithm used to generate its training data. Furthermore, the method's performance can be vastly improved by fine-tuning on the cleanly labeled benchmark dataset. The TreeLearn code is availabe from //github.com/ecker-lab/TreeLearn. The data as well as trained models can be found at //doi.org/10.25625/VPMPID.

We introduce a new debiasing framework for high-dimensional linear regression that bypasses the restrictions on covariate distributions imposed by modern debiasing technology. We study the prevalent setting where the number of features and samples are both large and comparable. In this context, state-of-the-art debiasing technology uses a degrees-of-freedom correction to remove shrinkage bias of regularized estimators and conduct inference. However, this method requires that the observed samples are i.i.d., the covariates follow a mean zero Gaussian distribution, and reliable covariance matrix estimates for observed features are available. This approach struggles when (i) covariates are non-Gaussian with heavy tails or asymmetric distributions, (ii) rows of the design exhibit heterogeneity or dependencies, and (iii) reliable feature covariance estimates are lacking. To address these, we develop a new strategy where the debiasing correction is a rescaled gradient descent step (suitably initialized) with step size determined by the spectrum of the sample covariance matrix. Unlike prior work, we assume that eigenvectors of this matrix are uniform draws from the orthogonal group. We show this assumption remains valid in diverse situations where traditional debiasing fails, including designs with complex row-column dependencies, heavy tails, asymmetric properties, and latent low-rank structures. We establish asymptotic normality of our proposed estimator (centered and scaled) under various convergence notions. Moreover, we develop a consistent estimator for its asymptotic variance. Lastly, we introduce a debiased Principal Component Regression (PCR) technique using our Spectrum-Aware approach. In varied simulations and real data experiments, we observe that our method outperforms degrees-of-freedom debiasing by a margin.

Complex adaptive systems (CASs), from ecosystems to economies, are open systems and inherently dependent on external conditions. While a system can transition from one state to another based on the magnitude of change in external conditions, the rate of change -- irrespective of magnitude -- may also lead to system state changes due to a phenomenon known as a rate-induced transition (RIT). This study presents a novel framework that captures RITs in CASs through a local model and a network extension where each node contributes to the structural adaptability of others. Our findings reveal how RITs occur at a critical environmental change rate, with lower-degree nodes tipping first due to fewer connections and reduced adaptive capacity. High-degree nodes tip later as their adaptability sources (lower-degree nodes) collapse. This pattern persists across various network structures. Our study calls for an extended perspective when managing CASs, emphasizing the need to focus not only on thresholds of external conditions but also the rate at which those conditions change, particularly in the context of the collapse of surrounding systems that contribute to the focal system's resilience. Our analytical method opens a path to designing management policies that mitigate RIT impacts and enhance resilience in ecological, social, and socioecological systems. These policies could include controlling environmental change rates, fostering system adaptability, implementing adaptive management strategies, and building capacity and knowledge exchange. Our study contributes to the understanding of RIT dynamics and informs effective management strategies for complex adaptive systems in the face of rapid environmental change.

A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.

User engagement is a critical metric for evaluating the quality of open-domain dialogue systems. Prior work has focused on conversation-level engagement by using heuristically constructed features such as the number of turns and the total time of the conversation. In this paper, we investigate the possibility and efficacy of estimating utterance-level engagement and define a novel metric, {\em predictive engagement}, for automatic evaluation of open-domain dialogue systems. Our experiments demonstrate that (1) human annotators have high agreement on assessing utterance-level engagement scores; (2) conversation-level engagement scores can be predicted from properly aggregated utterance-level engagement scores. Furthermore, we show that the utterance-level engagement scores can be learned from data. These scores can improve automatic evaluation metrics for open-domain dialogue systems, as shown by correlation with human judgements. This suggests that predictive engagement can be used as a real-time feedback for training better dialogue models.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司