亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Conformal prediction and other randomized model-free inference techniques are gaining increasing attention as general solutions to rigorously calibrate the output of any machine learning algorithm for novelty detection. This paper contributes to the field by developing a novel method for mitigating their algorithmic randomness, leading to an even more interpretable and reliable framework for powerful novelty detection under false discovery rate control. The idea is to leverage suitable conformal e-values instead of p-values to quantify the significance of each finding, which allows the evidence gathered from multiple mutually dependent analyses of the same data to be seamlessly aggregated. Further, the proposed method can reduce randomness without much loss of power, partly thanks to an innovative way of weighting conformal e-values based on additional side information carefully extracted from the same data. Simulations with synthetic and real data confirm this solution can be effective at eliminating random noise in the inferences obtained with state-of-the-art alternative techniques, sometimes also leading to higher power.

相關內容

Quantum machine learning is a promising programming paradigm for the optimization of quantum algorithms in the current era of noisy intermediate scale quantum (NISQ) computers. A fundamental challenge in quantum machine learning is generalization, as the designer targets performance under testing conditions, while having access only to limited training data. Existing generalization analyses, while identifying important general trends and scaling laws, cannot be used to assign reliable and informative "error bars" to the decisions made by quantum models. In this article, we propose a general methodology that can reliably quantify the uncertainty of quantum models, irrespective of the amount of training data, of the number of shots, of the ansatz, of the training algorithm, and of the presence of quantum hardware noise. The approach, which builds on probabilistic conformal prediction, turns an arbitrary, possibly small, number of shots from a pre-trained quantum model into a set prediction, e.g., an interval, that provably contains the true target with any desired coverage level. Experimental results confirm the theoretical calibration guarantees of the proposed framework, referred to as quantum conformal prediction.

We propose Gumbel Noise Score Matching (GNSM), a novel unsupervised method to detect anomalies in categorical data. GNSM accomplishes this by estimating the scores, i.e. the gradients of log likelihoods w.r.t.~inputs, of continuously relaxed categorical distributions. We test our method on a suite of anomaly detection tabular datasets. GNSM achieves a consistently high performance across all experiments. We further demonstrate the flexibility of GNSM by applying it to image data where the model is tasked to detect poor segmentation predictions. Images ranked anomalous by GNSM show clear segmentation failures, with the outputs of GNSM strongly correlating with segmentation metrics computed on ground-truth. We outline the score matching training objective utilized by GNSM and provide an open-source implementation of our work.

Reinforcement Learning aims at identifying and evaluating efficient control policies from data. In many real-world applications, the learner is not allowed to experiment and cannot gather data in an online manner (this is the case when experimenting is expensive, risky or unethical). For such applications, the reward of a given policy (the target policy) must be estimated using historical data gathered under a different policy (the behavior policy). Most methods for this learning task, referred to as Off-Policy Evaluation (OPE), do not come with accuracy and certainty guarantees. We present a novel OPE method based on Conformal Prediction that outputs an interval containing the true reward of the target policy with a prescribed level of certainty. The main challenge in OPE stems from the distribution shift due to the discrepancies between the target and the behavior policies. We propose and empirically evaluate different ways to deal with this shift. Some of these methods yield conformalized intervals with reduced length compared to existing approaches, while maintaining the same certainty level.

Reliable application of machine learning-based decision systems in the wild is one of the major challenges currently investigated by the field. A large portion of established approaches aims to detect erroneous predictions by means of assigning confidence scores. This confidence may be obtained by either quantifying the model's predictive uncertainty, learning explicit scoring functions, or assessing whether the input is in line with the training distribution. Curiously, while these approaches all state to address the same eventual goal of detecting failures of a classifier upon real-life application, they currently constitute largely separated research fields with individual evaluation protocols, which either exclude a substantial part of relevant methods or ignore large parts of relevant failure sources. In this work, we systematically reveal current pitfalls caused by these inconsistencies and derive requirements for a holistic and realistic evaluation of failure detection. To demonstrate the relevance of this unified perspective, we present a large-scale empirical study for the first time enabling benchmarking confidence scoring functions w.r.t all relevant methods and failure sources. The revelation of a simple softmax response baseline as the overall best performing method underlines the drastic shortcomings of current evaluation in the abundance of publicized research on confidence scoring. Code and trained models are at //github.com/IML-DKFZ/fd-shifts.

RooFit is a toolkit for statistical modeling and fitting used by most experiments in particle physics. Just as data sets from next-generation experiments grow, processing requirements for physics analysis become more computationally demanding, necessitating performance optimizations for RooFit. One possibility to speed-up minimization and add stability is the use of Automatic Differentiation (AD). Unlike for numerical differentiation, the computation cost scales linearly with the number of parameters, making AD particularly appealing for statistical models with many parameters. In this paper, we report on one possible way to implement AD in RooFit. Our approach is to add a facility to generate C++ code for a full RooFit model automatically. Unlike the original RooFit model, this generated code is free of virtual function calls and other RooFit-specific overhead. In particular, this code is then used to produce the gradient automatically with Clad. Clad is a source transformation AD tool implemented as a plugin to the clang compiler, which automatically generates the derivative code for input C++ functions. We show results demonstrating the improvements observed when applying this code generation strategy to HistFactory and other commonly used RooFit models. HistFactory is the subcomponent of RooFit that implements binned likelihood models with probability densities based on histogram templates. These models frequently have a very large number of free parameters and are thus an interesting first target for AD support in RooFit.

The stochastic approximation (SA) algorithm is a widely used probabilistic method for finding a zero or a fixed point of a vector-valued funtion, when only noisy measurements of the function are available. In the literature to date, one makes a distinction between ``synchronous'' updating, whereby every component of the current guess is updated at each time, and ``asynchronous'' updating, whereby only one component is updated. In this paper, we study an intermediate situation that we call ``batch asynchronous stochastic approximation'' (BASA), in which, at each time instant, \textit{some but not all} components of the current estimated solution are updated. BASA allows the user to trade off memory requirements against time complexity. We develop a general methodology for proving that such algorithms converge to the fixed point of the map under study. These convergence proofs make use of weaker hypotheses than existing results. Specifically, existing convergence proofs require that the measurement noise is a zero-mean i.i.d\ sequence or a martingale difference sequence. In the present paper, we permit biased measurements, that is, measurement noises that have nonzero conditional mean. Also, all convergence results to date assume that the stochastic step sizes satisfy a probabilistic analog of the well-known Robbins-Monro conditions. We replace this assumption by a purely deterministic condition on the irreducibility of the underlying Markov processes. As specific applications to Reinforcement Learning, we analyze the temporal difference algorithm $TD(\lambda)$ for value iteration, and the $Q$-learning algorithm for finding the optimal action-value function. In both cases, we establish the convergence of these algorithms, under milder conditions than in the existing literature.

Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Deep learning techniques have received much attention in the area of image denoising. However, there are substantial differences in the various types of deep learning methods dealing with image denoising. Specifically, discriminative learning based on deep learning can ably address the issue of Gaussian noise. Optimization models based on deep learning are effective in estimating the real noise. However, there has thus far been little related research to summarize the different deep learning techniques for image denoising. In this paper, we offer a comparative study of deep techniques in image denoising. We first classify the deep convolutional neural networks (CNNs) for additive white noisy images; the deep CNNs for real noisy images; the deep CNNs for blind denoising and the deep CNNs for hybrid noisy images, which represents the combination of noisy, blurred and low-resolution images. Then, we analyze the motivations and principles of the different types of deep learning methods. Next, we compare the state-of-the-art methods on public denoising datasets in terms of quantitative and qualitative analysis. Finally, we point out some potential challenges and directions of future research.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司