The gamma-Pareto type I convolution (GPC type I) distribution, which has a power function tail, was recently shown to describe the disposition kinetics of metformin in dogs precisely and better than sums of exponentials. However, this had very long run times and lost precision for its functional values at long times following intravenous injection. An accelerated algorithm and its computer code is now presented comprising two separate routines for short and long times and which, when applied to the dog data, completes in approximately 3 minutes per case. The new algorithm is a more practical research tool. Potential pharmacokinetic applications are discussed.
We study nonstochastic bandits and experts in a delayed setting where delays depend on both time and arms. While the setting in which delays only depend on time has been extensively studied, the arm-dependent delay setting better captures real-world applications at the cost of introducing new technical challenges. In the full information (experts) setting, we design an algorithm with a first-order regret bound that reveals an interesting trade-off between delays and losses. We prove a similar first-order regret bound also for the bandit setting, when the learner is allowed to observe how many losses are missing. These are the first bounds in the delayed setting that depend on the losses and delays of the best arm only. When in the bandit setting no information other than the losses is observed, we still manage to prove a regret bound through a modification to the algorithm of Zimmert and Seldin (2020). Our analyses hinge on a novel bound on the drift, measuring how much better an algorithm can perform when given a look-ahead of one round.
Given only positive examples and unlabeled examples (from both positive and negative classes), we might hope nevertheless to estimate an accurate positive-versus-negative classifier. Formally, this task is broken down into two subtasks: (i) Mixture Proportion Estimation (MPE) -- determining the fraction of positive examples in the unlabeled data; and (ii) PU-learning -- given such an estimate, learning the desired positive-versus-negative classifier. Unfortunately, classical methods for both problems break down in high-dimensional settings. Meanwhile, recently proposed heuristics lack theoretical coherence and depend precariously on hyperparameter tuning. In this paper, we propose two simple techniques: Best Bin Estimation (BBE) (for MPE); and Conditional Value Ignoring Risk (CVIR), a simple objective for PU-learning. Both methods dominate previous approaches empirically, and for BBE, we establish formal guarantees that hold whenever we can train a model to cleanly separate out a small subset of positive examples. Our final algorithm (TED)$^n$, alternates between the two procedures, significantly improving both our mixture proportion estimator and classifier
The task of modeling claim severities is addressed when data is not consistent with the classical regression assumptions. This framework is common in several lines of business within insurance and reinsurance, where catastrophic losses or heterogeneous sub-populations result in data difficult to model. Their correct analysis is required for pricing insurance products, and some of the most prevalent recent specifications in this direction are mixture-of-experts models. This paper proposes a regression model that generalizes the latter approach to the phase-type distribution setting. More specifically, the concept of mixing is extended to the case where an entire Markov jump process is unobserved and where states can communicate with each other. The covariates then act on the initial probabilities of such underlying chain, which play the role of expert weights. The basic properties of such a model are computed in terms of matrix functionals, and denseness properties are derived, demonstrating their flexibility. An effective estimation procedure is proposed, based on the EM algorithm and multinomial logistic regression, and subsequently illustrated using simulated and real-world datasets. The increased flexibility of the proposed models does not come at a high computational cost, and the motivation and interpretation are equally transparent to simpler MoE models.
We apply methods from randomized numerical linear algebra (RandNLA) to develop improved algorithms for the analysis of large-scale time series data. We first develop a new fast algorithm to estimate the leverage scores of an autoregressive (AR) model in big data regimes. We show that the accuracy of approximations lies within $(1+\bigO{\varepsilon})$ of the true leverage scores with high probability. These theoretical results are subsequently exploited to develop an efficient algorithm, called LSAR, for fitting an appropriate AR model to big time series data. Our proposed algorithm is guaranteed, with high probability, to find the maximum likelihood estimates of the parameters of the underlying true AR model and has a worst case running time that significantly improves those of the state-of-the-art alternatives in big data regimes. Empirical results on large-scale synthetic as well as real data highly support the theoretical results and reveal the efficacy of this new approach.
In this contribution we investigate in mathematical modeling and efficient simulation of biological cells with a particular emphasis on effective modeling of structural properties that originate from active forces generated from polymerization and depolymerization of cytoskeletal components. In detail, we propose a nonlinear continuum approach to model microtubule-based forces which have recently been established as central components of cell mechanics during early fruit fly wing development. The model is discretized in space using the finite-element method. Although the individual equations are decoupled by a semi-implicit time discretization, the discrete model is still computationally demanding. In addition, the parameters needed for the effective model equations are not easily available and have to be estimated or determined by repeatedly solving the model and fitting the results to measurements. This drastically increases the computational cost. Reduced basis methods have been used successfully to speed up such repeated solves, often by several orders of magnitude. However, for the complex nonlinear models regarded here, the application of these model order reduction methods is not always straight-forward and comes with its own set of challenges. In particular, subspace construction using the Proper Orthogonal Decomposition (POD) becomes prohibitively expensive for reasonably fine grids. We thus propose to combine the Hierarchical Approximate POD, which is a general, easy-to-implement approach to compute an approximate POD, with an Empirical Interpolation Method to efficiently generate a fast to evaluate reduced order model. Numerical experiments are given to demonstrate the applicability and efficiency of the proposed modeling and simulation approach.
We present a fast algorithm for the resolution of the Lasso for convolutional models in high dimension, with a particular focus on the problem of spike sorting in neuroscience. Making use of biological properties related to neurons, we explain how the particular structure of the problem allows several optimizations, leading to an algorithm with a temporal complexity which grows linearly with respect to the size of the recorded signal and can be performed online. Moreover the spatial separability of the initial problem allows to break it into subproblems, further reducing the complexity and making possible its application on the latest recording devices which comprise a large number of sensors. We provide several mathematical results: the size and numerical complexity of the subproblems can be estimated mathematically by using percolation theory. We also show under reasonable assumptions that the Lasso estimator retrieves the true support with large probability. Finally the theoretical time complexity of the algorithm is given. Numerical simulations are also provided in order to illustrate the efficiency of our approach.
We revisit the divide-and-conquer sequential Monte Carlo (DaC-SMC) algorithm and firmly establish it as a well-founded method by showing that it possesses the same basic properties as conventional sequential Monte Carlo (SMC) algorithms do. In particular, we derive pertinent laws of large numbers, $L^p$ inequalities, and central limit theorems; and we characterize the bias in the normalized estimates produced by the algorithm and argue the absence thereof in the unnormalized ones. We further consider its practical implementation and several interesting variants; obtain expressions for its globally and locally optimal intermediate targets, auxiliary measures, and proposal kernels; and show that, in comparable conditions, DaC-SMC proves more statistically efficient than its direct SMC analogue. We close the paper with a discussion of our results, open questions, and future research directions.
Motivated by A/B/n testing applications, we consider a finite set of distributions (called \emph{arms}), one of which is treated as a \emph{control}. We assume that the population is stratified into homogeneous subpopulations. At every time step, a subpopulation is sampled and an arm is chosen: the resulting observation is an independent draw from the arm conditioned on the subpopulation. The quality of each arm is assessed through a weighted combination of its subpopulation means. We propose a strategy for sequentially choosing one arm per time step so as to discover as fast as possible which arms, if any, have higher weighted expectation than the control. This strategy is shown to be asymptotically optimal in the following sense: if $\tau_\delta$ is the first time when the strategy ensures that it is able to output the correct answer with probability at least $1-\delta$, then $\mathbb{E}[\tau_\delta]$ grows linearly with $\log(1/\delta)$ at the exact optimal rate. This rate is identified in the paper in three different settings: (1) when the experimenter does not observe the subpopulation information, (2) when the subpopulation of each sample is observed but not chosen, and (3) when the experimenter can select the subpopulation from which each response is sampled. We illustrate the efficiency of the proposed strategy with numerical simulations on synthetic and real data collected from an A/B/n experiment.
The existence of simple, uncoupled no-regret dynamics that converge to correlated equilibria in normal-form games is a celebrated result in the theory of multi-agent systems. Specifically, it has been known for more than 20 years that when all players seek to minimize their internal regret in a repeated normal-form game, the empirical frequency of play converges to a normal-form correlated equilibrium. Extensive-form (that is, tree-form) games generalize normal-form games by modeling both sequential and simultaneous moves, as well as private information. Because of the sequential nature and presence of partial information in the game, extensive-form correlation has significantly different properties than the normal-form counterpart, many of which are still open research directions. Extensive-form correlated equilibrium (EFCE) has been proposed as the natural extensive-form counterpart to normal-form correlated equilibrium. However, it was currently unknown whether EFCE emerges as the result of uncoupled agent dynamics. In this paper, we give the first uncoupled no-regret dynamics that converge to the set of EFCEs in $n$-player general-sum extensive-form games with perfect recall. First, we introduce a notion of trigger regret in extensive-form games, which extends that of internal regret in normal-form games. When each player has low trigger regret, the empirical frequency of play is close to an EFCE. Then, we give an efficient no-trigger-regret algorithm. Our algorithm decomposes trigger regret into local subproblems at each decision point for the player, and constructs a global strategy of the player from the local solutions at each decision point.
We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.