亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, a discriminator-free adversarial-based Unsupervised Domain Adaptation (UDA) for Multi-Label Image Classification (MLIC) referred to as DDA-MLIC is proposed. Recently, some attempts have been made for introducing adversarial-based UDA methods in the context of MLIC. However, these methods which rely on an additional discriminator subnet present one major shortcoming. The learning of domain-invariant features may harm their task-specific discriminative power, since the classification and discrimination tasks are decoupled. Herein, we propose to overcome this issue by introducing a novel adversarial critic that is directly deduced from the task-specific classifier. Specifically, a two-component Gaussian Mixture Model (GMM) is fitted on the source and target predictions in order to distinguish between two clusters. This allows extracting a Gaussian distribution for each component. The resulting Gaussian distributions are then used for formulating an adversarial loss based on a Frechet distance. The proposed method is evaluated on several multi-label image datasets covering three different types of domain shift. The obtained results demonstrate that DDA-MLIC outperforms existing state-of-the-art methods in terms of precision while requiring a lower number of parameters. The code is publicly available at github.com/cvi2snt/DDA-MLIC.

相關內容

圖像(xiang)分類(lei),顧名思義(yi),是一個輸入圖像(xiang),輸出對(dui)該圖像(xiang)內容(rong)分類(lei)的描述(shu)的問題。它(ta)是計算機視覺(jue)的核(he)心,實際應用廣(guang)泛(fan)。

This paper introduces an extension to the Orienteering Problem (OP), called Clustered Orienteering Problem with Subgroups (COPS). In this variant, nodes are arranged into subgroups, and the subgroups are organized into clusters. A reward is associated with each subgroup and is gained only if all of its nodes are visited; however, at most one subgroup can be visited per cluster. The objective is to maximize the total collected reward while attaining a travel budget. We show that our new formulation has the ability to model and solve two previous well-known variants, the Clustered Orienteering Problem (COP) and the Set Orienteering Problem (SOP), in addition to other scenarios introduced here. An Integer Linear Programming (ILP) formulation and a Tabu Search-based heuristic are proposed to solve the problem. Experimental results indicate that the ILP method can yield optimal solutions at the cost of time, whereas the metaheuristic produces comparable solutions within a more reasonable computational cost.

BERT-based models have shown a remarkable ability in the Chinese Spelling Check (CSC) task recently. However, traditional BERT-based methods still suffer from two limitations. First, although previous works have identified that explicit prior knowledge like Part-Of-Speech (POS) tagging can benefit in the CSC task, they neglected the fact that spelling errors inherent in CSC data can lead to incorrect tags and therefore mislead models. Additionally, they ignored the correlation between the implicit hierarchical information encoded by BERT's intermediate layers and different linguistic phenomena. This results in sub-optimal accuracy. To alleviate the above two issues, we design a heterogeneous knowledge-infused framework to strengthen BERT-based CSC models. To incorporate explicit POS knowledge, we utilize an auxiliary task strategy driven by Gaussian mixture model. Meanwhile, to incorporate implicit hierarchical linguistic knowledge within the encoder, we propose a novel form of n-gram-based layerwise self-attention to generate a multilayer representation. Experimental results show that our proposed framework yields a stable performance boost over four strong baseline models and outperforms the previous state-of-the-art methods on two datasets.

This paper introduces an extension to the Orienteering Problem (OP), called Clustered Orienteering Problem with Subgroups (COPS). In this variant, nodes are arranged into subgroups, and the subgroups are organized into clusters. A reward is associated with each subgroup and is gained only if all of its nodes are visited; however, at most one subgroup can be visited per cluster. The objective is to maximize the total collected reward while attaining a travel budget. We show that our new formulation has the ability to model and solve two previous well-known variants, the Clustered Orienteering Problem (COP) and the Set Orienteering Problem (SOP), in addition to other scenarios introduced here. An Integer Linear Programming (ILP) formulation and a Tabu Search-based heuristic are proposed to solve the problem. Experimental results indicate that the ILP method can yield optimal solutions at the cost of time, whereas the metaheuristic produces comparable solutions within a more reasonable computational cost.

This paper presents the concepts of Artificial Intelligence, Multi-Agent-Systems, Coordination, Intelligent Robotics and Deep Reinforcement Learning. Emphasis is given on and how AI and DRL, may be efficiently used to create efficient robot skills and coordinated robotic teams, capable of performing very complex actions and tasks, such as playing a game of soccer. The paper also presents the concept of robotic soccer and the vision and structure of the RoboCup initiative with emphasis on the Humanoid Simulation 3D league and the new challenges this competition, poses. The final topics presented at the paper are based on the research developed/coordinated by the author throughout the last 22 years in the context of the FCPortugal project. The paper presents a short description of the coordination methodologies developed, such as: Strategy, Tactics, Formations, Setplays, and Coaching Languages and the use of Machine Learning to optimize the use of this concepts. The topics presented also include novel stochastic search algorithms for black box optimization and their use in the optimization of omnidirectional walking skills, robotic multi-agent learning and the creation of a humanoid kick with controlled distance. Finally, new applications using variations of the Proximal Policy Optimization algorithm and advanced modelling for robot and multi-robot learning are briefly explained with emphasis for our new humanoid sprinting and running skills and an amazing humanoid robot soccer dribbling skill. FCPortugal project enabled us to publish more than 100 papers and win several competitions in different leagues and many scientific awards at RoboCup. In total, our team won more than 40 awards in international competitions including a clear victory at the Simulation 3D League at RoboCup 2022 competition, scoring 84 goals and conceding only 2.

This paper introduces CARSS (Cooperative Attention-guided Reinforcement Subpath Synthesis), a novel approach to address the Traveling Salesman Problem (TSP) by leveraging cooperative Multi-Agent Reinforcement Learning (MARL). CARSS decomposes the TSP solving process into two distinct yet synergistic steps: "subpath generation" and "subpath merging." In the former, a cooperative MARL framework is employed to iteratively generate subpaths using multiple agents. In the latter, these subpaths are progressively merged to form a complete cycle. The algorithm's primary objective is to enhance efficiency in terms of training memory consumption, testing time, and scalability, through the adoption of a multi-agent divide and conquer paradigm. Notably, attention mechanisms play a pivotal role in feature embedding and parameterization strategies within CARSS. The training of the model is facilitated by the independent REINFORCE algorithm. Empirical experiments reveal CARSS's superiority compared to single-agent alternatives: it demonstrates reduced GPU memory utilization, accommodates training graphs nearly 2.5 times larger, and exhibits the potential for scaling to even more extensive problem sizes. Furthermore, CARSS substantially reduces testing time and optimization gaps by approximately 50% for TSP instances of up to 1000 vertices, when compared to standard decoding methods.

In this paper, we tackle the new task of video-based Activated Muscle Group Estimation (AMGE) aiming at identifying active muscle regions during physical activity in the wild. To this intent, we provide the MuscleMap dataset featuring >15K video clips with 135 different activities and 20 labeled muscle groups. This dataset opens the vistas to multiple video-based applications in sports and rehabilitation medicine under flexible environment constraints. The proposed MuscleMap dataset is constructed with YouTube videos, specifically targeting High-Intensity Interval Training (HIIT) physical exercise in the wild. To make the AMGE model applicable in real-life situations, it is crucial to ensure that the model can generalize well to numerous types of physical activities not present during training and involving new combinations of activated muscles. To achieve this, our benchmark also covers an evaluation setting where the model is exposed to activity types excluded from the training set. Our experiments reveal that the generalizability of existing architectures adapted for the AMGE task remains a challenge. Therefore, we also propose a new approach, TransM3E, which employs a multi-modality feature fusion mechanism between both the video transformer model and the skeleton-based graph convolution model with novel cross-modal knowledge distillation executed on multi-classification tokens. The proposed method surpasses all popular video classification models when dealing with both, previously seen and new types of physical activities. The contributed dataset and code are made publicly available at //github.com/KPeng9510/MuscleMap.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司