We address the problem of visual storytelling, i.e., generating a story for a given sequence of images. While each sentence of the story should describe a corresponding image, a coherent story also needs to be consistent and relate to both future and past images. To achieve this we develop ordered image attention (OIA). OIA models interactions between the sentence-corresponding image and important regions in other images of the sequence. To highlight the important objects, a message-passing-like algorithm collects representations of those objects in an order-aware manner. To generate the story's sentences, we then highlight important image attention vectors with an Image-Sentence Attention (ISA). Further, to alleviate common linguistic mistakes like repetitiveness, we introduce an adaptive prior. The obtained results improve the METEOR score on the VIST dataset by 1%. In addition, an extensive human study verifies coherency improvements and shows that OIA and ISA generated stories are more focused, shareable, and image-grounded.
Following the major successes of self-attention and Transformers for image analysis, we investigate the use of such attention mechanisms in the context of Image Quality Assessment (IQA) and propose a novel full-reference IQA method, Vision Transformer for Attention Modulated Image Quality (VTAMIQ). Our method achieves competitive or state-of-the-art performance on the existing IQA datasets and significantly outperforms previous metrics in cross-database evaluations. Most patch-wise IQA methods treat each patch independently; this partially discards global information and limits the ability to model long-distance interactions. We avoid this problem altogether by employing a transformer to encode a sequence of patches as a single global representation, which by design considers interdependencies between patches. We rely on various attention mechanisms -- first with self-attention within the Transformer, and second with channel attention within our difference modulation network -- specifically to reveal and enhance the more salient features throughout our architecture. With large-scale pre-training for both classification and IQA tasks, VTAMIQ generalizes well to unseen sets of images and distortions, further demonstrating the strength of transformer-based networks for vision modelling.
As a natural language generation task, it is challenging to generate informative and coherent review text. In order to enhance the informativeness of the generated text, existing solutions typically learn to copy entities or triples from knowledge graphs (KGs). However, they lack overall consideration to select and arrange the incorporated knowledge, which tends to cause text incoherence. To address the above issue, we focus on improving entity-centric coherence of the generated reviews by leveraging the semantic structure of KGs. In this paper, we propose a novel Coherence Enhanced Text Planning model (CETP) based on knowledge graphs (KGs) to improve both global and local coherence for review generation. The proposed model learns a two-level text plan for generating a document: (1) the document plan is modeled as a sequence of sentence plans in order, and (2) the sentence plan is modeled as an entity-based subgraph from KG. Local coherence can be naturally enforced by KG subgraphs through intra-sentence correlations between entities. For global coherence, we design a hierarchical self-attentive architecture with both subgraph- and node-level attention to enhance the correlations between subgraphs. To our knowledge, we are the first to utilize a KG-based text planning model to enhance text coherence for review generation. Extensive experiments on three datasets confirm the effectiveness of our model on improving the content coherence of generated texts.
It is always well believed that parsing an image into constituent visual patterns would be helpful for understanding and representing an image. Nevertheless, there has not been evidence in support of the idea on describing an image with a natural-language utterance. In this paper, we introduce a new design to model a hierarchy from instance level (segmentation), region level (detection) to the whole image to delve into a thorough image understanding for captioning. Specifically, we present a HIerarchy Parsing (HIP) architecture that novelly integrates hierarchical structure into image encoder. Technically, an image decomposes into a set of regions and some of the regions are resolved into finer ones. Each region then regresses to an instance, i.e., foreground of the region. Such process naturally builds a hierarchal tree. A tree-structured Long Short-Term Memory (Tree-LSTM) network is then employed to interpret the hierarchal structure and enhance all the instance-level, region-level and image-level features. Our HIP is appealing in view that it is pluggable to any neural captioning models. Extensive experiments on COCO image captioning dataset demonstrate the superiority of HIP. More remarkably, HIP plus a top-down attention-based LSTM decoder increases CIDEr-D performance from 120.1% to 127.2% on COCO Karpathy test split. When further endowing instance-level and region-level features from HIP with semantic relation learnt through Graph Convolutional Networks (GCN), CIDEr-D is boosted up to 130.6%.
Image captioning has attracted ever-increasing research attention in the multimedia community. To this end, most cutting-edge works rely on an encoder-decoder framework with attention mechanisms, which have achieved remarkable progress. However, such a framework does not consider scene concepts to attend visual information, which leads to sentence bias in caption generation and defects the performance correspondingly. We argue that such scene concepts capture higher-level visual semantics and serve as an important cue in describing images. In this paper, we propose a novel scene-based factored attention module for image captioning. Specifically, the proposed module first embeds the scene concepts into factored weights explicitly and attends the visual information extracted from the input image. Then, an adaptive LSTM is used to generate captions for specific scene types. Experimental results on Microsoft COCO benchmark show that the proposed scene-based attention module improves model performance a lot, which outperforms the state-of-the-art approaches under various evaluation metrics.
We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.
In Natural Language Processing (NLP), we often need to extract information from tree topology. Sentence structure can be represented via a dependency tree or a constituency tree structure. For this reason, a variant of LSTMs, named Tree-LSTM, was proposed to work on tree topology. In this paper, we design a generalized attention framework for both dependency and constituency trees by encoding variants of decomposable attention inside a Tree-LSTM cell. We evaluated our models on a semantic relatedness task and achieved notable results compared to Tree-LSTM based methods with no attention as well as other neural and non-neural methods and good results compared to Tree-LSTM based methods with attention.
Recent progress has been made in using attention based encoder-decoder framework for image and video captioning. Most existing decoders apply the attention mechanism to every generated word including both visual words (e.g., "gun" and "shooting") and non-visual words (e.g. "the", "a"). However, these non-visual words can be easily predicted using natural language model without considering visual signals or attention. Imposing attention mechanism on non-visual words could mislead and decrease the overall performance of visual captioning. Furthermore, the hierarchy of LSTMs enables more complex representation of visual data, capturing information at different scales. To address these issues, we propose a hierarchical LSTM with adaptive attention (hLSTMat) approach for image and video captioning. Specifically, the proposed framework utilizes the spatial or temporal attention for selecting specific regions or frames to predict the related words, while the adaptive attention is for deciding whether to depend on the visual information or the language context information. Also, a hierarchical LSTMs is designed to simultaneously consider both low-level visual information and high-level language context information to support the caption generation. We initially design our hLSTMat for video captioning task. Then, we further refine it and apply it to image captioning task. To demonstrate the effectiveness of our proposed framework, we test our method on both video and image captioning tasks. Experimental results show that our approach achieves the state-of-the-art performance for most of the evaluation metrics on both tasks. The effect of important components is also well exploited in the ablation study.
Answering visual questions need acquire daily common knowledge and model the semantic connection among different parts in images, which is too difficult for VQA systems to learn from images with the only supervision from answers. Meanwhile, image captioning systems with beam search strategy tend to generate similar captions and fail to diversely describe images. To address the aforementioned issues, we present a system to have these two tasks compensate with each other, which is capable of jointly producing image captions and answering visual questions. In particular, we utilize question and image features to generate question-related captions and use the generated captions as additional features to provide new knowledge to the VQA system. For image captioning, our system attains more informative results in term of the relative improvements on VQA tasks as well as competitive results using automated metrics. Applying our system to the VQA tasks, our results on VQA v2 dataset achieve 65.8% using generated captions and 69.1% using annotated captions in validation set and 68.4% in the test-standard set. Further, an ensemble of 10 models results in 69.7% in the test-standard split.
Top-down visual attention mechanisms have been used extensively in image captioning and visual question answering (VQA) to enable deeper image understanding through fine-grained analysis and even multiple steps of reasoning. In this work, we propose a combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions. This is the natural basis for attention to be considered. Within our approach, the bottom-up mechanism (based on Faster R-CNN) proposes image regions, each with an associated feature vector, while the top-down mechanism determines feature weightings. Applying this approach to image captioning, our results on the MSCOCO test server establish a new state-of-the-art for the task, achieving CIDEr / SPICE / BLEU-4 scores of 117.9, 21.5 and 36.9, respectively. Demonstrating the broad applicability of the method, applying the same approach to VQA we obtain first place in the 2017 VQA Challenge.
Automatic image captioning has recently approached human-level performance due to the latest advances in computer vision and natural language understanding. However, most of the current models can only generate plain factual descriptions about the content of a given image. However, for human beings, image caption writing is quite flexible and diverse, where additional language dimensions, such as emotion, humor and language styles, are often incorporated to produce diverse, emotional, or appealing captions. In particular, we are interested in generating sentiment-conveying image descriptions, which has received little attention. The main challenge is how to effectively inject sentiments into the generated captions without altering the semantic matching between the visual content and the generated descriptions. In this work, we propose two different models, which employ different schemes for injecting sentiments into image captions. Compared with the few existing approaches, the proposed models are much simpler and yet more effective. The experimental results show that our model outperform the state-of-the-art models in generating sentimental (i.e., sentiment-bearing) image captions. In addition, we can also easily manipulate the model by assigning different sentiments to the testing image to generate captions with the corresponding sentiments.