In the digital era, the prevalence of depressive symptoms expressed on social media has raised serious concerns, necessitating advanced methodologies for timely detection. This paper addresses the challenge of interpretable depression detection by proposing a novel methodology that effectively combines Large Language Models (LLMs) with eXplainable Artificial Intelligence (XAI) and conversational agents like ChatGPT. In our methodology, explanations are achieved by integrating BERTweet, a Twitter-specific variant of BERT, into a novel self-explanatory model, namely BERT-XDD, capable of providing both classification and explanations via masked attention. The interpretability is further enhanced using ChatGPT to transform technical explanations into human-readable commentaries. By introducing an effective and modular approach for interpretable depression detection, our methodology can contribute to the development of socially responsible digital platforms, fostering early intervention and support for mental health challenges under the guidance of qualified healthcare professionals.
To simplify the analysis of Boolean networks, a reduction in the number of components is often considered. A popular reduction method consists in eliminating components that are not autoregulated, using variable substitution. In this work, we show how this method can be extended, for asynchronous dynamics of Boolean networks, to the elimination of vertices that have a negative autoregulation, and study the effects on the dynamics and interaction structure. For elimination of non-autoregulated variables, the preservation of attractors is in general guaranteed only for fixed points. Here we give sufficient conditions for the preservation of complex attractors. The removal of so called mediator nodes (i.e. vertices with indegree and outdegree one) is often considered, and frequently does not affect the attractor landscape. We clarify that this is not always the case, and in some situations even subtle changes in the interaction structure can lead to a different asymptotic behaviour. Finally, we use properties of the more general elimination method introduced here to give an alternative proof for a bound on the number of attractors of asynchronous Boolean networks in terms of the cardinality of positive feedback vertex sets of the interaction graph.
The academic intelligence of large language models (LLMs) has made remarkable progress in recent times, but their social intelligence performance remains unclear. Inspired by established human social intelligence frameworks, particularly Daniel Goleman's social intelligence theory, we have developed a standardized social intelligence test based on real-world social scenarios to comprehensively assess the social intelligence of LLMs, termed as the Situational Evaluation of Social Intelligence (SESI). We conducted an extensive evaluation with 13 recent popular and state-of-art LLM agents on SESI. The results indicate the social intelligence of LLMs still has significant room for improvement, with superficially friendliness as a primary reason for errors. Moreover, there exists a relatively low correlation between the social intelligence and academic intelligence exhibited by LLMs, suggesting that social intelligence is distinct from academic intelligence for LLMs. Additionally, while it is observed that LLMs can't ``understand'' what social intelligence is, their social intelligence, similar to that of humans, is influenced by social factors.
In today's digital age, images have emerged as powerful tools for politicians to engage with their voters on social media platforms. Visual content possesses a unique emotional appeal that often leads to increased user engagement. However, research on visual communication remains relatively limited, particularly in the Global South. This study aims to bridge this gap by employing a combination of computational methods and qualitative approach to investigate the visual communication strategies employed in a dataset of 11,263 Instagram posts by 19 Brazilian presidential candidates in 2018 and 2022 national elections. Through two studies, we observed consistent patterns across these candidates on their use of visual political communication. Notably, we identify a prevalence of celebratory and positively toned images. They also exhibit a strong sense of personalization, portraying candidates connected with their voters on a more emotional level. Our research also uncovers unique contextual nuances specific to the Brazilian political landscape. We note a substantial presence of screenshots from news websites and other social media platforms. Furthermore, text-edited images with portrayals emerge as a prominent feature. In light of these results, we engage in a discussion regarding the implications for the broader field of visual political communication. This article serves as a testament to the pivotal role that Instagram has played in shaping the narrative of two fiercely polarized Brazilian elections, casting a revealing light on the ever-evolving dynamics of visual political communication in the digital age. Finally, we propose avenues for future research in the realm of visual political communication.
Nowadays human interactions largely take place on social networks, with online users' behavior often falling into a few general typologies or "social roles". Among these, opinion leaders are of crucial importance as they have the ability to spread an idea or opinion on a large scale across the network, with possible tangible consequences in the real world. In this work we extract and characterize the different social roles of users within the Reddit WallStreetBets community, around the time of the GameStop short squeeze of January 2021 -- when a handful of committed users led the whole community to engage in a large and risky financial operation. We identify the profiles of both average users and of relevant outliers, including opinion leaders, using an iterative, semi-supervised classification algorithm, which allows us to discern the characteristics needed to play a particular social role. The key features of opinion leaders are large risky investments and constant updates on a single stock, which allowed them to attract a large following and, in the case of GameStop, ignite the interest of the community. Finally, we observe a substantial change in the behavior and attitude of users after the short squeeze event: no new opinion leaders are found and the community becomes less focused on investments. Overall, this work sheds light on the users' roles and dynamics that led to the GameStop short squeeze, while also suggesting why WallStreetBets no longer wielded such large influence on financial markets, in the aftermath of this event.
We investigate personalizing the explanations that an Intelligent Tutoring System generates to justify the hints it provides to students to foster their learning. The personalization targets students with low levels of two traits, Need for Cognition and Conscientiousness, and aims to enhance these students' engagement with the explanations, based on prior findings that these students do not naturally engage with the explanations but they would benefit from them if they do. To evaluate the effectiveness of the personalization, we conducted a user study where we found that our proposed personalization significantly increases our target users' interaction with the hint explanations, their understanding of the hints and their learning. Hence, this work provides valuable insights into effectively personalizing AI-driven explanations for cognitively demanding tasks such as learning.
In this article we show that the asymptotic outcomes of both shallow and deep neural networks such as those used in BloombergGPT to generate economic time series are exactly the Nash equilibria of a non-potential game. We then design and analyze deep neural network algorithms that converge to these equilibria. The methodology is extended to federated deep neural networks between clusters of regional servers and on-device clients. Finally, the variational inequalities behind large language models including encoder-decoder related transformers are established.
Differences in staining and imaging procedures can cause significant color variations in histopathology images, leading to poor generalization when deploying deep-learning models trained from a different data source. Various color augmentation methods have been proposed to generate synthetic images during training to make models more robust, eliminating the need for stain normalization during test time. Many color augmentation methods leverage domain labels to generate synthetic images. This approach causes three significant challenges to scaling such a model. Firstly, incorporating data from a new domain into deep-learning models trained on existing domain labels is not straightforward. Secondly, dependency on domain labels prevents the use of pathology images without domain labels to improve model performance. Finally, implementation of these methods becomes complicated when multiple domain labels (e.g., patient identification, medical center, etc) are associated with a single image. We introduce ContriMix, a novel domain label free stain color augmentation method based on DRIT++, a style-transfer method. Contrimix leverages sample stain color variation within a training minibatch and random mixing to extract content and attribute information from pathology images. This information can be used by a trained ContriMix model to create synthetic images to improve the performance of existing classifiers. ContriMix outperforms competing methods on the Camelyon17-WILDS dataset. Its performance is consistent across different slides in the test set while being robust to the color variation from rare substances in pathology images. We make our code and trained ContriMix models available for research use. The code for ContriMix can be found at //gitlab.com/huutan86/contrimix
In this paper, we address the critical challenges of double-spending and selfish mining attacks in blockchain-based digital currencies. Double-spending is a problem where the same tender is spent multiple times during a digital currency transaction, while selfish mining is an intentional alteration of a blockchain to increase rewards to one miner or a group of miners. We introduce a new attack that combines both these attacks and propose a machine learning-based solution to mitigate the risks associated with them. Specifically, we use the learning automaton, a powerful online learning method, to develop two models, namely the SDTLA and WVBM, which can effectively defend against selfish mining attacks. Our experimental results show that the SDTLA method increases the profitability threshold of selfish mining up to 47$\%$, while the WVBM method performs even better and is very close to the ideal situation where each miner's revenue is proportional to their shared hash processing power. Additionally, we demonstrate that both methods can effectively reduce the risks of double-spending by tuning the $Z$ Parameter. Our findings highlight the potential of SDTLA and WVBM as promising solutions for enhancing the security and efficiency of blockchain networks.
Objective: To analyze the current scientific knowledge and research lines focused on environmentally sustainable health systems, including the role of nurses. Background: There seem to be differences between creating interventions focused on environmentally sustainable health systems, including nurses, and the scarcity of research on this topic, framed on the Sustainable Development Goals. Methods: A bibliometric analysis was carried out, via three databases (Web of Science, Scopus, and Pubmed), and the guideline recommendations were followed to select bibliometric data. Results: The search resulted in 159 publications, significantly increasing the trends from 2017 to 2021 (p=0.028). The most relevant countries in this area were the United States of America, the United Kingdom, and Sweden. Also, the top articles were from relevant journals, indexed in Journal Citation Report, and the first and the second quartile linked to the nursing field and citations (p<0.001). Conclusion: Education is key to achieving environmentally sustainable health systems via institutions and policies. Implications for nursing management: There is a lack of experimental data and policies on achieving or maintaining environmentally sustainable health care systems, indicating that nurses have an important role and should be consulted and included in decision-making policies regarding sustainability in the healthcare systems.
Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.