We present a general methodology for using unlabeled data to design semi supervised learning (SSL) variants of the Empirical Risk Minimization (ERM) learning process. Focusing on generalized linear regression, we analyze of the effectiveness of our SSL approach in improving prediction performance. The key ideas are carefully considering the null model as a competitor, and utilizing the unlabeled data to determine signal-noise combinations where SSL outperforms both supervised learning and the null model. We then use SSL in an adaptive manner based on estimation of the signal and noise. In the special case of linear regression with Gaussian covariates, we prove that the non-adaptive SSL version is in fact not capable of improving on both the supervised estimator and the null model simultaneously, beyond a negligible O(1/n) term. On the other hand, the adaptive model presented in this work, can achieve a substantial improvement over both competitors simultaneously, under a variety of settings. This is shown empirically through extensive simulations, and extended to other scenarios, such as non-Gaussian covariates, misspecified linear regression, or generalized linear regression with non-linear link functions.
Given its status as a classic problem and its importance to both theoreticians and practitioners, edit distance provides an excellent lens through which to understand how the theoretical analysis of algorithms impacts practical implementations. From an applied perspective, the goals of theoretical analysis are to predict the empirical performance of an algorithm and to serve as a yardstick to design novel algorithms that perform well in practice. In this paper, we systematically survey the types of theoretical analysis techniques that have been applied to edit distance and evaluate the extent to which each one has achieved these two goals. These techniques include traditional worst-case analysis, worst-case analysis parametrized by edit distance or entropy or compressibility, average-case analysis, semi-random models, and advice-based models. We find that the track record is mixed. On one hand, two algorithms widely used in practice have been born out of theoretical analysis and their empirical performance is captured well by theoretical predictions. On the other hand, all the algorithms developed using theoretical analysis as a yardstick since then have not had any practical relevance. We conclude by discussing the remaining open problems and how they can be tackled.
Due to the high human cost of annotation, it is non-trivial to curate a large-scale medical dataset that is fully labeled for all classes of interest. Instead, it would be convenient to collect multiple small partially labeled datasets from different matching sources, where the medical images may have only been annotated for a subset of classes of interest. This paper offers an empirical understanding of an under-explored problem, namely partially supervised multi-label classification (PSMLC), where a multi-label classifier is trained with only partially labeled medical images. In contrast to the fully supervised counterpart, the partial supervision caused by medical data scarcity has non-trivial negative impacts on the model performance. A potential remedy could be augmenting the partial labels. Though vicinal risk minimization (VRM) has been a promising solution to improve the generalization ability of the model, its application to PSMLC remains an open question. To bridge the methodological gap, we provide the first VRM-based solution to PSMLC. The empirical results also provide insights into future research directions on partially supervised learning under data scarcity.
We study the acceleration of the Local Polynomial Interpolation-based Gradient Descent method (LPI-GD) recently proposed for the approximate solution of empirical risk minimization problems (ERM). We focus on loss functions that are strongly convex and smooth with condition number $\sigma$. We additionally assume the loss function is $\eta$-H\"older continuous with respect to the data. The oracle complexity of LPI-GD is $\tilde{O}\left(\sigma m^d \log(1/\varepsilon)\right)$ for a desired accuracy $\varepsilon$, where $d$ is the dimension of the parameter space, and $m$ is the cardinality of an approximation grid. The factor $m^d$ can be shown to scale as $O((1/\varepsilon)^{d/2\eta})$. LPI-GD has been shown to have better oracle complexity than gradient descent (GD) and stochastic gradient descent (SGD) for certain parameter regimes. We propose two accelerated methods for the ERM problem based on LPI-GD and show an oracle complexity of $\tilde{O}\left(\sqrt{\sigma} m^d \log(1/\varepsilon)\right)$. Moreover, we provide the first empirical study on local polynomial interpolation-based gradient methods and corroborate that LPI-GD has better performance than GD and SGD in some scenarios, and the proposed methods achieve acceleration.
Ambient lighting conditions play a crucial role in determining the perceptual quality of images from photographic devices. In general, inadequate transmission light and undesired atmospheric conditions jointly degrade the image quality. If we know the desired ambient factors associated with the given low-light image, we can recover the enhanced image easily \cite{b1}. Typical deep networks perform enhancement mappings without investigating the light distribution and color formulation properties. This leads to a lack of image instance-adaptive performance in practice. On the other hand, physical model-driven schemes suffer from the need for inherent decompositions and multiple objective minimizations. Moreover, the above approaches are rarely data efficient or free of postprediction tuning. Influenced by the above issues, this study presents a semisupervised training method using no-reference image quality metrics for low-light image restoration. We incorporate the classical haze distribution model \cite{b2} to explore the physical properties of the given image in order to learn the effect of atmospheric components and minimize a single objective for restoration. We validate the performance of our network for six widely used low-light datasets. The experiments show that the proposed study achieves state-of-the-art or comparable performance.
One of the most important problems in system identification and statistics is how to estimate the unknown parameters of a given model. Optimization methods and specialized procedures, such as Empirical Minimization (EM) can be used in case the likelihood function can be computed. For situations where one can only simulate from a parametric model, but the likelihood is difficult or impossible to evaluate, a technique known as the Two-Stage (TS) Approach can be applied to obtain reliable parametric estimates. Unfortunately, there is currently a lack of theoretical justification for TS. In this paper, we propose a statistical decision-theoretical derivation of TS, which leads to Bayesian and Minimax estimators. We also show how to apply the TS approach on models for independent and identically distributed samples, by computing quantiles of the data as a first step, and using a linear function as the second stage. The proposed method is illustrated via numerical simulations.
The inverse probability (IPW) and doubly robust (DR) estimators are often used to estimate the average causal effect (ATE), but are vulnerable to outliers. The IPW/DR median can be used for outlier-resistant estimation of the ATE, but the outlier resistance of the median is limited and it is not resistant enough for heavy contamination. We propose extensions of the IPW/DR estimators with density power weighting, which can eliminate the influence of outliers almost completely. The outlier resistance of the proposed estimators is evaluated through the unbiasedness of the estimating equations. Unlike the median-based methods, our estimators are resistant to outliers even under heavy contamination. Interestingly, the naive extension of the DR estimator requires bias correction to keep the double robustness even under the most tractable form of contamination. In addition, the proposed estimators are found to be highly resistant to outliers in more difficult settings where the contamination ratio depends on the covariates. The outlier resistance of our estimators from the viewpoint of the influence function is also favorable. Our theoretical results are verified via Monte Carlo simulations and real data analysis. The proposed methods were found to have more outlier resistance than the median-based methods and estimated the potential mean with a smaller error than the median-based methods.
Deep learning-based semi-supervised learning (SSL) algorithms have led to promising results in medical images segmentation and can alleviate doctors' expensive annotations by leveraging unlabeled data. However, most of the existing SSL algorithms in literature tend to regularize the model training by perturbing networks and/or data. Observing that multi/dual-task learning attends to various levels of information which have inherent prediction perturbation, we ask the question in this work: can we explicitly build task-level regularization rather than implicitly constructing networks- and/or data-level perturbation-and-transformation for SSL? To answer this question, we propose a novel dual-task-consistency semi-supervised framework for the first time. Concretely, we use a dual-task deep network that jointly predicts a pixel-wise segmentation map and a geometry-aware level set representation of the target. The level set representation is converted to an approximated segmentation map through a differentiable task transform layer. Simultaneously, we introduce a dual-task consistency regularization between the level set-derived segmentation maps and directly predicted segmentation maps for both labeled and unlabeled data. Extensive experiments on two public datasets show that our method can largely improve the performance by incorporating the unlabeled data. Meanwhile, our framework outperforms the state-of-the-art semi-supervised medical image segmentation methods. Code is available at: //github.com/Luoxd1996/DTC
Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
Traditional methods for link prediction can be categorized into three main types: graph structure feature-based, latent feature-based, and explicit feature-based. Graph structure feature methods leverage some handcrafted node proximity scores, e.g., common neighbors, to estimate the likelihood of links. Latent feature methods rely on factorizing networks' matrix representations to learn an embedding for each node. Explicit feature methods train a machine learning model on two nodes' explicit attributes. Each of the three types of methods has its unique merits. In this paper, we propose SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction), a new framework for link prediction which combines the power of all the three types into a single graph neural network (GNN). GNN is a new type of neural network which directly accepts graphs as input and outputs their labels. In SEAL, the input to the GNN is a local subgraph around each target link. We prove theoretically that our local subgraphs also reserve a great deal of high-order graph structure features related to link existence. Another key feature is that our GNN can naturally incorporate latent features and explicit features. It is achieved by concatenating node embeddings (latent features) and node attributes (explicit features) in the node information matrix for each subgraph, thus combining the three types of features to enhance GNN learning. Through extensive experiments, SEAL shows unprecedentedly strong performance against a wide range of baseline methods, including various link prediction heuristics and network embedding methods.