亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the coordinated escort problem, where a decentralised team of supporting robots implicitly assist the mission of higher-value principal robots. The defining challenge is how to evaluate the effect of supporting robots' actions on the principal robots' mission. To capture this effect, we define two novel auxiliary reward functions for supporting robots called satisfaction improvement and satisfaction entropy, which computes the improvement in probability of mission success, or the uncertainty thereof. Given these reward functions, we coordinate the entire team of principal and supporting robots using decentralised cross entropy method (Dec-CEM), a new extension of CEM to multi-agent systems based on the product distribution approximation. In a simulated object avoidance scenario, our planning framework demonstrates up to two-fold improvement in task satisfaction against conventional decoupled information gathering.The significance of our results is to introduce a new family of algorithmic problems that will enable important new practical applications of heterogeneous multi-robot systems.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Existing traffic signal control systems rely on oversimplified rule-based methods, and even RL-based methods are often suboptimal and unstable. To address this, we propose a cooperative multi-objective architecture called Multi-Objective Multi-Agent Deep Deterministic Policy Gradient (MOMA-DDPG), which estimates multiple reward terms for traffic signal control optimization using age-decaying weights. Our approach involves two types of agents: one focuses on optimizing local traffic at each intersection, while the other aims to optimize global traffic throughput. We evaluate our method using real-world traffic data collected from an Asian country's traffic cameras. Despite the inclusion of a global agent, our solution remains decentralized as this agent is no longer necessary during the inference stage. Our results demonstrate the effectiveness of MOMA-DDPG, outperforming state-of-the-art methods across all performance metrics. Additionally, our proposed system minimizes both waiting time and carbon emissions. Notably, this paper is the first to link carbon emissions and global agents in traffic signal control.

Detection of the outliers is pivotal for any machine learning model deployed and operated in real-world. It is essential for the Deep Neural Networks that were shown to be overconfident with such inputs. Moreover, even deep generative models that allow estimation of the probability density of the input fail in achieving this task. In this work, we concentrate on the specific type of these models: Variational Autoencoders (VAEs). First, we unveil a significant theoretical flaw in the assumption of the classical VAE model. Second, we enforce an accommodating topological property to the image of the deep neural mapping to the latent space: compactness to alleviate the flaw and obtain the means to provably bound the image within the determined limits by squeezing both inliers and outliers together. We enforce compactness using two approaches: (i) Alexandroff extension and (ii) fixed Lipschitz continuity constant on the mapping of the encoder of the VAEs. Finally and most importantly, we discover that the anomalous inputs predominantly tend to land on the vacant latent holes within the compact space, enabling their successful identification. For that reason, we introduce a specifically devised score for hole detection and evaluate the solution against several baseline benchmarks achieving promising results.

AI-powered programming assistants are increasingly gaining popularity, with GitHub Copilot alone used by over a million developers worldwide. These tools are far from perfect, however, producing code suggestions that may be incorrect or incomplete in subtle ways. As a result, developers face a new set of challenges when they need to understand, validate, and choose between AI's suggestions. This paper explores whether Live Programming, a continuous display of a program's runtime values, can help address these challenges. We introduce Live Exploration of AI-Generated Programs, a new interaction model for AI programming assistants that supports exploring multiple code suggestions through Live Programming. We implement this interaction model in a prototype Python environment LEAP and evaluate it through a between-subject study. Our results motivate several design opportunities for future AI-powered programming tools.

The problem of generalization and transportation of treatment effect estimates from a study sample to a target population is central to empirical research and statistical methodology. In both randomized experiments and observational studies, weighting methods are often used with this objective. Traditional methods construct the weights by separately modeling the treatment assignment and study selection probabilities and then multiplying functions (e.g., inverses) of their estimates. In this work, we provide a justification and an implementation for weighting in a single step. We show a formal connection between this one-step method and inverse probability and inverse odds weighting. We demonstrate that the resulting estimator for the target average treatment effect is consistent, asymptotically Normal, multiply robust, and semiparametrically efficient. We evaluate the performance of the one-step estimator in a simulation study. We illustrate its use in a case study on the effects of physician racial diversity on preventive healthcare utilization among Black men in California. We provide R code implementing the methodology.

Bayesian inference and the use of posterior or posterior predictive probabilities for decision making have become increasingly popular in clinical trials. The current approach toward Bayesian clinical trials is, however, a hybrid Bayesian-frequentist approach where the design and decision criteria are assessed with respect to frequentist operating characteristics such as power and type I error rate. These operating characteristics are commonly obtained via simulation studies. In this article we propose methodology to utilize large sample theory of the posterior distribution to define simple parametric models for the sampling distribution of the Bayesian test statistics, i.e., posterior tail probabilities. The parameters of these models are then estimated using a small number of simulation scenarios, thereby refining these models to capture the sampling distribution for small to moderate sample size. The proposed approach toward assessment of operating characteristics and sample size determination can be considered as simulation-assisted rather than simulation-based and significantly reduces the computational burden for design of Bayesian trials.

The proliferation of the Internet of Things (IoT) has led to the emergence of crowdsensing applications, where a multitude of interconnected devices collaboratively collect and analyze data. Ensuring the authenticity and integrity of the data collected by these devices is crucial for reliable decision-making and maintaining trust in the system. Traditional authentication methods are often vulnerable to attacks or can be easily duplicated, posing challenges to securing crowdsensing applications. Besides, current solutions leveraging device behavior are mostly focused on device identification, which is a simpler task than authentication. To address these issues, an individual IoT device authentication framework based on hardware behavior fingerprinting and Transformer autoencoders is proposed in this work. This solution leverages the inherent imperfections and variations in IoT device hardware to differentiate between devices with identical specifications. By monitoring and analyzing the behavior of key hardware components, such as the CPU, GPU, RAM, and Storage on devices, unique fingerprints for each device are created. The performance samples are considered as time series data and used to train anomaly detection transformer models, one per device. Then, the framework is validated within a spectrum crowdsensing system leveraging Raspberry Pi devices. After a pool of experiments, the model from each device is able to individually authenticate it between the 45 devices employed for validation. An average True Positive Rate (TPR) of 0.74+-0.13 and an average maximum False Positive Rate (FPR) of 0.06+-0.09 demonstrate the effectiveness of this approach in enhancing authentication, security, and trust in crowdsensing applications.

The cyber-threat landscape has evolved tremendously in recent years, with new threat variants emerging daily, and large-scale coordinated campaigns becoming more prevalent. In this study, we propose CELEST (CollaborativE LEarning for Scalable Threat detection), a federated machine learning framework for global threat detection over HTTP, which is one of the most commonly used protocols for malware dissemination and communication. CELEST leverages federated learning in order to collaboratively train a global model across multiple clients who keep their data locally, thus providing increased privacy and confidentiality assurances. Through a novel active learning component integrated with the federated learning technique, our system continuously discovers and learns the behavior of new, evolving, and globally-coordinated cyber threats. We show that CELEST is able to expose attacks that are largely invisible to individual organizations. For instance, in one challenging attack scenario with data exfiltration malware, the global model achieves a three-fold increase in Precision-Recall AUC compared to the local model. We deploy CELEST on two university networks and show that it is able to detect the malicious HTTP communication with high precision and low false positive rates. Furthermore, during its deployment, CELEST detected a set of previously unknown 42 malicious URLs and 20 malicious domains in one day, which were confirmed to be malicious by VirusTotal.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.

Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.

北京阿比特科技有限公司