亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop an efficient, non-intrusive, adaptive algorithm for the solution of elliptic partial differential equations with random coefficients. The sparse Fast Fourier Transform detects the most important frequencies in a given search domain and therefore adaptively generates a suitable Fourier basis corresponding to the approximately largest Fourier coefficients of the function. Our uniform sFFT does this w.r.t. the stochastic domain simultaneously for every node of a finite element mesh in the spatial domain and creates a suitable approximation space for all spatial nodes by joining the detected frequency sets. This strategy allows for a faster and more efficient computation, than just using the full sFFT algorithm for each node separately. We then test the usFFT for different examples using periodic, affine and lognormal random coefficients. The results are significantly better than when using given standard frequency sets and the algorithm does not require any a priori information about the solution.

相關內容

Elimination of unknowns in a system of differential equations is often required when analysing (possibly nonlinear) dynamical systems models, where only a subset of variables are observable. One such analysis, identifiability, often relies on computing input-output relations via differential algebraic elimination. Determining identifiability, a natural prerequisite for meaningful parameter estimation, is often prohibitively expensive for medium to large systems due to the computationally expensive task of elimination. We propose an algorithm that computes a description of the set of differential-algebraic relations between the input and output variables of a dynamical system model. The resulting algorithm outperforms general-purpose software for differential elimination on a set of benchmark models from literature. We use the designed elimination algorithm to build a new randomized algorithm for assessing structural identifiability of a parameter in a parametric model. A parameter is said to be identifiable if its value can be uniquely determined from input-output data assuming the absence of noise and sufficiently exciting inputs. Our new algorithm allows the identification of models that could not be tackled before. Our implementation is publicly available as a Julia package at //github.com/SciML/StructuralIdentifiability.jl.

We construct a space-time parallel method for solving parabolic partial differential equations by coupling the Parareal algorithm in time with overlapping domain decomposition in space. Reformulating the original Parareal algorithm as a variational method and implementing a finite element discretization in space enables an adjoint-based a posteriori error analysis to be performed. Through an appropriate choice of adjoint problems and residuals the error analysis distinguishes between errors arising due to the temporal and spatial discretizations, as well as between the errors arising due to incomplete Parareal iterations and incomplete iterations of the domain decomposition solver. We first develop an error analysis for the Parareal method applied to parabolic partial differential equations, and then refine this analysis to the case where the associated spatial problems are solved using overlapping domain decomposition. These constitute our Time Parallel Algorithm (TPA) and Space-Time Parallel Algorithm (STPA) respectively. Numerical experiments demonstrate the accuracy of the estimator for both algorithms and the iterations between distinct components of the error.

Recently Chen and Gao~\cite{ChenGao2017} proposed a new quantum algorithm for Boolean polynomial system solving, motivated by the cryptanalysis of some post-quantum cryptosystems. The key idea of their approach is to apply a Quantum Linear System (QLS) algorithm to a Macaulay linear system over $\CC$, which is derived from the Boolean polynomial system. The efficiency of their algorithm depends on the condition number of the Macaulay matrix. In this paper, we give a strong lower bound on the condition number as a function of the Hamming weight of the Boolean solution, and show that in many (if not all) cases a Grover-based exhaustive search algorithm outperforms their algorithm. Then, we improve upon Chen and Gao's algorithm by introducing the Boolean Macaulay linear system over $\CC$ by reducing the original Macaulay linear system. This improved algorithm could potentially significantly outperform the brute-force algorithm, when the Hamming weight of the solution is logarithmic in the number of Boolean variables. Furthermore, we provide a simple and more elementary proof of correctness for our improved algorithm using a reduction employing the Valiant-Vazirani affine hashing method, and also extend the result to polynomial systems over $\FF_q$ improving on subsequent work by Chen, Gao and Yuan \cite{ChenGao2018}. We also suggest a new approach for extracting the solution of the Boolean polynomial system via a generalization of the quantum coupon collector problem \cite{arunachalam2020QuantumCouponCollector}.

Minimum residual methods such as the least-squares finite element method (FEM) or the discontinuous Petrov--Galerkin method with optimal test functions (DPG) usually exclude singular data, e.g., non square-integrable loads. We consider a DPG method and a least-squares FEM for the Poisson problem. For both methods we analyze regularization approaches that allow the use of $H^{-1}$ loads, and also study the case of point loads. For all cases we prove appropriate convergence orders. We present various numerical experiments that confirm our theoretical results. Our approach extends to general well-posed second-order problems.

We analyze the problem of simultaneous support recovery and estimation of the coefficient vector ($\beta^*$) in a linear model with independent and identically distributed Normal errors. We apply the penalised least square estimator of $\beta^*$ based on non-linear penalties of stochastic gates (STG) [YLNK20] to estimate the coefficients. Considering Gaussian design matrices we show that under reasonable conditions on dimension and sparsity of $\beta^*$ the STG based estimator converges to the true data generating coefficient vector and also detects its support set with high probability. We propose a new projection based algorithm for the linear models setup to improve upon the existing STG estimator that was originally designed for general non-linear models. Our new procedure outperforms many classical estimators for sparse support recovery in synthetic data analysis.

Motivated by A/B/n testing applications, we consider a finite set of distributions (called \emph{arms}), one of which is treated as a \emph{control}. We assume that the population is stratified into homogeneous subpopulations. At every time step, a subpopulation is sampled and an arm is chosen: the resulting observation is an independent draw from the arm conditioned on the subpopulation. The quality of each arm is assessed through a weighted combination of its subpopulation means. We propose a strategy for sequentially choosing one arm per time step so as to discover as fast as possible which arms, if any, have higher weighted expectation than the control. This strategy is shown to be asymptotically optimal in the following sense: if $\tau_\delta$ is the first time when the strategy ensures that it is able to output the correct answer with probability at least $1-\delta$, then $\mathbb{E}[\tau_\delta]$ grows linearly with $\log(1/\delta)$ at the exact optimal rate. This rate is identified in the paper in three different settings: (1) when the experimenter does not observe the subpopulation information, (2) when the subpopulation of each sample is observed but not chosen, and (3) when the experimenter can select the subpopulation from which each response is sampled. We illustrate the efficiency of the proposed strategy with numerical simulations on synthetic and real data collected from an A/B/n experiment.

This paper derives confidence intervals (CI) and time-uniform confidence sequences (CS) for the classical problem of estimating an unknown mean from bounded observations. We present a general approach for deriving concentration bounds, that can be seen as a generalization (and improvement) of the celebrated Chernoff method. At its heart, it is based on deriving a new class of composite nonnegative martingales, with strong connections to testing by betting and the method of mixtures. We show how to extend these ideas to sampling without replacement, another heavily studied problem. In all cases, our bounds are adaptive to the unknown variance, and empirically vastly outperform existing approaches based on Hoeffding or empirical Bernstein inequalities and their recent supermartingale generalizations. In short, we establish a new state-of-the-art for four fundamental problems: CSs and CIs for bounded means, when sampling with and without replacement.

We propose an adaptive finite element algorithm to approximate solutions of elliptic problems whose forcing data is locally defined and is approximated by regularization (or mollification). We show that the energy error decay is quasi-optimal in two dimensional space and sub-optimal in three dimensional space. Numerical simulations are provided to confirm our findings.

Convex regression is the problem of fitting a convex function to a data set consisting of input-output pairs. We present a new approach to this problem called spectrahedral regression, in which we fit a spectrahedral function to the data, i.e. a function that is the maximum eigenvalue of an affine matrix expression of the input. This method represents a significant generalization of polyhedral (also called max-affine) regression, in which a polyhedral function (a maximum of a fixed number of affine functions) is fit to the data. We prove bounds on how well spectrahedral functions can approximate arbitrary convex functions via statistical risk analysis. We also analyze an alternating minimization algorithm for the non-convex optimization problem of fitting the best spectrahedral function to a given data set. We show that this algorithm converges geometrically with high probability to a small ball around the optimal parameter given a good initialization. Finally, we demonstrate the utility of our approach with experiments on synthetic data sets as well as real data arising in applications such as economics and engineering design.

Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.

北京阿比特科技有限公司