亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the recent advances of IoT (Internet of Things) new and more robust security frameworks are needed to detect and mitigate new forms of cyber-attacks, which exploit complex and heterogeneity IoT networks, as well as, the existence of many vulnerabilities in IoT devices. With the rise of blockchain technologies service providers pay considerable attention to better understand and adopt blockchain technologies in order to have better secure and trusted systems for own organisations and their customers. The present paper introduces a high level guide for the senior officials and decision makers in the organisations and technology managers for blockchain security framework by design principle for trust and adoption in IoT environments. The paper discusses Cyber-Trust project blockchain technology development as a representative case study for offered security framework. Security and privacy by design approach is introduced as an important consideration in setting up the framework.

相關內容

Federated learning allows us to distributively train a machine learning model where multiple parties share local model parameters without sharing private data. However, parameter exchange may still leak information. Several approaches have been proposed to overcome this, based on multi-party computation, fully homomorphic encryption, etc.; many of these protocols are slow and impractical for real-world use as they involve a large number of cryptographic operations. In this paper, we propose the use of Trusted Execution Environments (TEE), which provide a platform for isolated execution of code and handling of data, for this purpose. We describe Flatee, an efficient privacy-preserving federated learning framework across TEEs, which considerably reduces training and communication time. Our framework can handle malicious parties (we do not natively solve adversarial data poisoning, though we describe a preliminary approach to handle this).

In view of the security issues of the Internet of Things (IoT), considered better combining edge computing and blockchain with the IoT, integrating attribute-based encryption (ABE) and attribute-based access control (ABAC) models with attributes as the entry point, an attribute-based encryption and access control scheme (ABE-ACS) has been proposed. Facing Edge-Iot, which is a heterogeneous network composed of most resource-limited IoT devices and some nodes with higher computing power. For the problems of high resource consumption and difficult deployment of existing blockchain platforms, we design a lightweight blockchain (LBC) with improvement of the proof-of-work consensus. For the access control policies, the threshold tree and LSSS are used for conversion and assignment, stored in the blockchain to protect the privacy of the policy. For device and data, six smart contracts are designed to realize the ABAC and penalty mechanism, with which ABE is outsourced to edge nodes for privacy and integrity. Thus, our scheme realizing Edge-Iot privacy protection, data and device controlled access. The security analysis shows that the proposed scheme is secure and the experimental results show that our LBC has higher throughput and lower resources consumption, the cost of encryption and decryption of our scheme is desirable.

In this paper, we present an approach for predicting trust links between peers in social media, one that is grounded in the artificial intelligence area of multiagent trust modeling. In particular, we propose a data-driven multi-faceted trust modeling which incorporates many distinct features for a comprehensive analysis. We focus on demonstrating how clustering of similar users enables a critical new functionality: supporting more personalized, and thus more accurate predictions for users. Illustrated in a trust-aware item recommendation task, we evaluate the proposed framework in the context of a large Yelp dataset. We then discuss how improving the detection of trusted relationships in social media can assist in supporting online users in their battle against the spread of misinformation and rumours, within a social networking environment which has recently exploded in popularity. We conclude with a reflection on a particularly vulnerable user base, older adults, in order to illustrate the value of reasoning about groups of users, looking to some future directions for integrating known preferences with insights gained through data analysis.

While many researchers adopt a sharding approach to design scaling blockchains, few works have studied the transaction placement problem incurred by sharding protocols. The widely-used hashing placement algorithm renders an overwhelming portion of transactions as cross-shard. In this paper, we analyze the high cost of cross-shard transactions and reveal that most Bitcoin transactions have simple dependencies and can become single-shard under a placement algorithm taking transaction dependencies into account. In addition, we perform a case study of OptChain, which is the state-of-the-art transaction placement algorithm for sharded blockchains, and find a shortcoming of it. A simple fix is proposed, and our evaluation results demonstrate that the proposed fix effectively helps OptChain overcome the shortcoming and significantly improve the system performance under a special workload. The authors of OptChain made some revisions to the algorithm description after noticing our work. Their updated algorithm does not exhibit the shortcoming under the workloads employed by this paper.

Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.

In light of the emergence of deep reinforcement learning (DRL) in recommender systems research and several fruitful results in recent years, this survey aims to provide a timely and comprehensive overview of the recent trends of deep reinforcement learning in recommender systems. We start with the motivation of applying DRL in recommender systems. Then, we provide a taxonomy of current DRL-based recommender systems and a summary of existing methods. We discuss emerging topics and open issues, and provide our perspective on advancing the domain. This survey serves as introductory material for readers from academia and industry into the topic and identifies notable opportunities for further research.

The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.

Driven by the visions of Internet of Things and 5G communications, the edge computing systems integrate computing, storage and network resources at the edge of the network to provide computing infrastructure, enabling developers to quickly develop and deploy edge applications. Nowadays the edge computing systems have received widespread attention in both industry and academia. To explore new research opportunities and assist users in selecting suitable edge computing systems for specific applications, this survey paper provides a comprehensive overview of the existing edge computing systems and introduces representative projects. A comparison of open source tools is presented according to their applicability. Finally, we highlight energy efficiency and deep learning optimization of edge computing systems. Open issues for analyzing and designing an edge computing system are also studied in this survey.

Smart services are an important element of the smart cities and the Internet of Things (IoT) ecosystems where the intelligence behind the services is obtained and improved through the sensory data. Providing a large amount of training data is not always feasible; therefore, we need to consider alternative ways that incorporate unlabeled data as well. In recent years, Deep reinforcement learning (DRL) has gained great success in several application domains. It is an applicable method for IoT and smart city scenarios where auto-generated data can be partially labeled by users' feedback for training purposes. In this paper, we propose a semi-supervised deep reinforcement learning model that fits smart city applications as it consumes both labeled and unlabeled data to improve the performance and accuracy of the learning agent. The model utilizes Variational Autoencoders (VAE) as the inference engine for generalizing optimal policies. To the best of our knowledge, the proposed model is the first investigation that extends deep reinforcement learning to the semi-supervised paradigm. As a case study of smart city applications, we focus on smart buildings and apply the proposed model to the problem of indoor localization based on BLE signal strength. Indoor localization is the main component of smart city services since people spend significant time in indoor environments. Our model learns the best action policies that lead to a close estimation of the target locations with an improvement of 23% in terms of distance to the target and at least 67% more received rewards compared to the supervised DRL model.

Internet of Things (IoT) infrastructure within the physical library environment is the basis for an integrative, hybrid approach to digital resource recommenders. The IoT infrastructure provides mobile, dynamic wayfinding support for items in the collection, which includes features for location-based recommendations. The evaluation and analysis herein clarified the nature of users' requests for recommendations based on their location, and describes subject areas of the library for which users request recommendations. The results indicated that users of IoT-based recommendations are interested in a broad distribution of subjects, with a short-head distribution from this collection in American and English Literature. A long-tail finding showed a diversity of topics that are recommended to users in the library book stacks with IoT-powered recommendations.

北京阿比特科技有限公司