亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We obtain sharp upper and lower bounds for the expected max-sliced 1-Wasserstein distance between a probability measure on a separable Hilbert space and its empirical distribution from $n$ samples. A version of this result for probability measures on Banach spaces is also obtained.

相關內容

We consider the problem of reconstructing the symmetric difference between similar sets from their representations (sketches) of size linear in the number of differences. Exact solutions to this problem are based on error-correcting coding techniques and suffer from a large decoding time. Existing probabilistic solutions based on Invertible Bloom Lookup Tables (IBLTs) are time-efficient but offer insufficient success guarantees for many applications. Here we propose a tunable trade-off between the two approaches combining the efficiency of IBLTs with exponentially decreasing failure probability. The proof relies on a refined analysis of IBLTs proposed in (Baek Tejs Houen et al. SOSA 2023) which has an independent interest. We also propose a modification of our algorithm that enables telling apart the elements of each set in the symmetric difference.

We consider the bit complexity of computing Chow forms and their generalization to multiprojective spaces. We develop a deterministic algorithm using resultants and obtain a single exponential complexity upper bound. Earlier computational results for Chow forms were in the arithmetic complexity model, and our result represents the first bit complexity bound. We also extend our algorithm to Hurwitz forms in projective space, and explore connections between multiprojective Hurwitz forms and matroid theory. The motivation for our work comes from incidence geometry where intriguing computational algebra problems remain open.

Riemannian optimization is concerned with problems, where the independent variable lies on a smooth manifold. There is a number of problems from numerical linear algebra that fall into this category, where the manifold is usually specified by special matrix structures, such as orthogonality or definiteness. Following this line of research, we investigate tools for Riemannian optimization on the symplectic Stiefel manifold. We complement the existing set of numerical optimization algorithms with a Riemannian trust region method tailored to the symplectic Stiefel manifold. To this end, we derive a matrix formula for the Riemannian Hessian under a right-invariant metric. Moreover, we propose a novel retraction for approximating the Riemannian geodesics. Finally, we conduct a comparative study in which we juxtapose the performance of the Riemannian variants of the steepest descent, conjugate gradients, and trust region methods on selected matrix optimization problems that feature symplectic constraints.

Traditional recommender systems heavily rely on ID features, which often encounter challenges related to cold-start and generalization. Modeling pre-extracted content features can mitigate these issues, but is still a suboptimal solution due to the discrepancies between training tasks and model parameters. End-to-end training presents a promising solution for these problems, yet most of the existing works mainly focus on retrieval models, leaving the multimodal techniques under-utilized. In this paper, we propose an industrial multimodal recommendation framework named EM3: End-to-end training of Multimodal Model and ranking Model, which sufficiently utilizes multimodal information and allows personalized ranking tasks to directly train the core modules in the multimodal model to obtain more task-oriented content features, without overburdening resource consumption. First, we propose Fusion-Q-Former, which consists of transformers and a set of trainable queries, to fuse different modalities and generate fixed-length and robust multimodal embeddings. Second, in our sequential modeling for user content interest, we utilize Low-Rank Adaptation technique to alleviate the conflict between huge resource consumption and long sequence length. Third, we propose a novel Content-ID-Contrastive learning task to complement the advantages of content and ID by aligning them with each other, obtaining more task-oriented content embeddings and more generalized ID embeddings. In experiments, we implement EM3 on different ranking models in two scenario, achieving significant improvements in both offline evaluation and online A/B test, verifying the generalizability of our method. Ablation studies and visualization are also performed. Furthermore, we also conduct experiments on two public datasets to show that our proposed method outperforms the state-of-the-art methods.

We introduce the R package clrng which leverages the gpuR package and is able to generate random numbers in parallel on a Graphics Processing Unit (GPU) with the clRNG (OpenCL) library. Parallel processing with GPU's can speed up computationally intensive tasks, which when combined with R, it can largely improve R's downsides in terms of slow speed, memory usage and computation mode. clrng enables reproducible research by setting random initial seeds for streams on GPU and CPU, and can thus accelerate several types of statistical simulation and modelling. The random number generator in clrng guarantees independent parallel samples even when R is used interactively in an ad-hoc manner, with sessions being interrupted and restored. This package is portable and flexible, developers can use its random number generation kernel for various other purposes and applications.

The implication problem for conditional independence (CI) asks whether the fact that a probability distribution obeys a given finite set of CI relations implies that a further CI statement also holds in this distribution. This problem has a long and fascinating history, cumulating in positive results about implications now known as the semigraphoid axioms as well as impossibility results about a general finite characterization of CI implications. Motivated by violation of faithfulness assumptions in causal discovery, we study the implication problem in the special setting where the CI relations are obtained from a directed acyclic graphical (DAG) model along with one additional CI statement. Focusing on the Gaussian case, we give a complete characterization of when such an implication is graphical by using algebraic techniques. Moreover, prompted by the relevance of strong faithfulness in statistical guarantees for causal discovery algorithms, we give a graphical solution for an approximate CI implication problem, in which we ask whether small values of one additional partial correlation entail small values for yet a further partial correlation.

The paper concerns problems of the recovery of differential operators from a noisy Fourier transform. In particular, optimal methods are obtained for the recovery of powers of generalized Laplace operators from a noisy Fourier transform in the $L_2$-metric.

This work performs the convergence analysis of the polytopal nodal discretisation of contact-mechanics (with Tresca friction) recently introduced in [18] in the framework of poro-elastic models in fractured porous media. The scheme is based on a mixed formulation, using face-wise constant approximations of the Lagrange multipliers along the fracture network and a fully discrete first order nodal approximation of the displacement field. The displacement field is enriched with additional bubble degrees of freedom along the fractures to ensure the inf-sup stability with the Lagrange multiplier space. It is presented in a fully discrete formulation, which makes its study more straightforward, but also has a Virtual Element interpretation. The analysis establishes an abstract error estimate accounting for the fully discrete framework and the non-conformity of the discretisation. A first order error estimate is deduced for sufficiently smooth solutions both for the gradient of the displacement field and the Lagrange multiplier. A key difficulty of the numerical analysis is the proof of a discrete inf-sup condition, which is based on a non-standard $H^{-1/2}$-norm (to deal with fracture networks) and involves the jump of the displacements, not their traces. The analysis also requires the proof of a discrete Korn inequality for the discrete displacement field which takes into account fracture networks. Numerical experiments based on analytical solutions confirm our theoretical findings

We consider the problems of estimation and optimization of utility-based shortfall risk (UBSR), which is a popular risk measure in finance. In the context of UBSR estimation, we derive a non-asymptotic bound on the mean-squared error of the classical sample average approximation (SAA) of UBSR. Next, in the context of UBSR optimization, we derive an expression for the UBSR gradient under a smooth parameterization. This expression is a ratio of expectations, both of which involve the UBSR. We use SAA for the numerator as well as denominator in the UBSR gradient expression to arrive at a biased gradient estimator. We derive non-asymptotic bounds on the estimation error, which show that our gradient estimator is asymptotically unbiased. We incorporate the aforementioned gradient estimator into a stochastic gradient (SG) algorithm for UBSR optimization. Finally, we derive non-asymptotic bounds that quantify the rate of convergence of our SG algorithm for UBSR optimization.

In data assimilation, an ensemble provides a nonintrusive way to evolve a probability density described by a nonlinear prediction model. Although a large ensemble size is required for statistical accuracy, the ensemble size is typically limited to a small number due to the computational cost of running the prediction model, which leads to a sampling error. Several methods, such as localization, exist to mitigate the sampling error, often requiring problem-dependent fine-tuning and design. This work introduces another sampling error mitigation method using a smoothness constraint in the Fourier space. In particular, this work smoothes out the spectrum of the system to increase the stability and accuracy even under a small ensemble size. The efficacy of the new idea is validated through a suite of stringent test problems, including Lorenz 96 and Kuramoto-Sivashinsky turbulence models.

北京阿比特科技有限公司