亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Traditional recommender systems heavily rely on ID features, which often encounter challenges related to cold-start and generalization. Modeling pre-extracted content features can mitigate these issues, but is still a suboptimal solution due to the discrepancies between training tasks and model parameters. End-to-end training presents a promising solution for these problems, yet most of the existing works mainly focus on retrieval models, leaving the multimodal techniques under-utilized. In this paper, we propose an industrial multimodal recommendation framework named EM3: End-to-end training of Multimodal Model and ranking Model, which sufficiently utilizes multimodal information and allows personalized ranking tasks to directly train the core modules in the multimodal model to obtain more task-oriented content features, without overburdening resource consumption. First, we propose Fusion-Q-Former, which consists of transformers and a set of trainable queries, to fuse different modalities and generate fixed-length and robust multimodal embeddings. Second, in our sequential modeling for user content interest, we utilize Low-Rank Adaptation technique to alleviate the conflict between huge resource consumption and long sequence length. Third, we propose a novel Content-ID-Contrastive learning task to complement the advantages of content and ID by aligning them with each other, obtaining more task-oriented content embeddings and more generalized ID embeddings. In experiments, we implement EM3 on different ranking models in two scenario, achieving significant improvements in both offline evaluation and online A/B test, verifying the generalizability of our method. Ablation studies and visualization are also performed. Furthermore, we also conduct experiments on two public datasets to show that our proposed method outperforms the state-of-the-art methods.

相關內容

Many complicated real-world tasks can be broken down into smaller, more manageable parts, and planning with prior knowledge extracted from these simplified pieces is crucial for humans to make accurate decisions. However, replicating this process remains a challenge for AI agents and naturally raises two questions: How to extract discriminative knowledge representation from priors? How to develop a rational plan to decompose complex problems? Most existing representation learning methods employing a single encoder structure are fragile and sensitive to complex and diverse dynamics. To address this issue, we introduce a multiple-encoder and individual-predictor regime to learn task-essential representations from sufficient data for simple subtasks. Multiple encoders can extract adequate task-relevant dynamics without confusion, and the shared predictor can discriminate the task characteristics. We also use the attention mechanism to generate a top-k subtask planning tree, which customizes subtask execution plans in guiding complex decisions on unseen tasks. This process enables forward-looking and globality by flexibly adjusting the depth and width of the planning tree. Empirical results on a challenging platform composed of some basic simple tasks and combinatorially rich synthetic tasks consistently outperform some competitive baselines and demonstrate the benefits of our design.

Training on large amounts of rationales (i.e., CoT Fine-tuning) is effective at improving the reasoning capabilities of large language models (LLMs). However, acquiring human-authored rationales or augmenting rationales from proprietary models is costly and not scalable. In this paper, we study the problem of whether LLMs could self-improve their reasoning capabilities. To this end, we propose Self-Explore, where the LLM is tasked to explore the first wrong step (i.e., the first pit) within the rationale and use such signals as fine-grained rewards for further improvement. On the GSM8K and MATH test set, Self-Explore achieves 11.57% and 2.89% improvement on average across three LLMs compared to supervised fine-tuning (SFT). Our code is available at //github.com/hbin0701/Self-Explore.

Unsupervised integrative analysis of multiple data sources has become common place and scalable algorithms are necessary to accommodate ever increasing availability of data. Only few currently methods have estimation speed as their focus, and those that do are only applicable to restricted data layouts such as different data types measured on the same observation units. We introduce a novel point of view on low-rank matrix integration phrased as a graph estimation problem which allows development of a method, large-scale Collective Matrix Factorization (lsCMF), which is able to integrate data in flexible layouts in a speedy fashion. It utilizes a matrix denoising framework for rank estimation and geometric properties of singular vectors to efficiently integrate data. The quick estimation speed of lsCMF while retaining good estimation of data structure is then demonstrated in simulation studies.

Center-based clustering has attracted significant research interest from both theory and practice. In many practical applications, input data often contain background knowledge that can be used to improve clustering results. In this work, we build on widely adopted $k$-center clustering and model its input background knowledge as must-link (ML) and cannot-link (CL) constraint sets. However, most clustering problems including $k$-center are inherently $\mathcal{NP}$-hard, while the more complex constrained variants are known to suffer severer approximation and computation barriers that significantly limit their applicability. By employing a suite of techniques including reverse dominating sets, linear programming (LP) integral polyhedron, and LP duality, we arrive at the first efficient approximation algorithm for constrained $k$-center with the best possible ratio of 2. We also construct competitive baseline algorithms and empirically evaluate our approximation algorithm against them on a variety of real datasets. The results validate our theoretical findings and demonstrate the great advantages of our algorithm in terms of clustering cost, clustering quality, and running time.

In many applications, the demand arises for algorithms capable of aligning partially overlapping point sets while remaining invariant to the corresponding transformations. This research presents a method designed to meet such requirements through minimization of the objective function of the robust point matching (RPM) algorithm. First, we show that the RPM objective is a cubic polynomial. Then, through variable substitution, we transform the RPM objective to a quadratic function. Leveraging the convex envelope of bilinear monomials, we proceed to relax the resulting objective function, thus obtaining a lower bound problem that can be conveniently decomposed into distinct linear assignment and low-dimensional convex quadratic program components, both amenable to efficient optimization. Furthermore, a branch-and-bound (BnB) algorithm is devised, which solely branches over the transformation parameters, thereby boosting convergence rate. Empirical evaluations demonstrate better robustness of the proposed methodology against non-rigid deformation, positional noise, and outliers, particularly in scenarios where outliers remain distinct from inliers, when compared with prevailing state-of-the-art approaches.

For pricing American options, %after suitable discretization in space and time, a sequence of discrete linear complementarity problems (LCPs) or equivalently Hamilton-Jacobi-Bellman (HJB) equations need to be solved in a sequential time-stepping manner. In each time step, the policy iteration or its penalty variant is often applied due to their fast convergence rates. In this paper, we aim to solve for all time steps simultaneously, by applying the policy iteration to an ``all-at-once form" of the HJB equations, where two different parallel-in-time preconditioners are proposed to accelerate the solution of the linear systems within the policy iteration. Our proposed methods are generally applicable for such all-at-once forms of the HJB equation, arising from option pricing problems with optimal stopping and nontrivial underlying asset models. Numerical examples are presented to show the feasibility and robust convergence behavior of the proposed methodology.

Concerns have arisen regarding the unregulated utilization of artificial intelligence (AI) outputs, potentially leading to various societal issues. While humans routinely validate information, manually inspecting the vast volumes of AI-generated results is impractical. Therefore, automation and visualization are imperative. In this context, Explainable AI (XAI) technology is gaining prominence, aiming to streamline AI model development and alleviate the burden of explaining AI outputs to users. Simultaneously, software auto-tuning (AT) technology has emerged, aiming to reduce the man-hours required for performance tuning in numerical calculations. AT is a potent tool for cost reduction during parameter optimization and high-performance programming for numerical computing. The synergy between AT mechanisms and AI technology is noteworthy, with AI finding extensive applications in AT. However, applying AI to AT mechanisms introduces challenges in AI model explainability. This research focuses on XAI for AI models when integrated into two different processes for practical numerical computations: performance parameter tuning of accuracy-guaranteed numerical calculations and sparse iterative algorithm.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.

北京阿比特科技有限公司