亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Missing data frequently occurs in datasets across various domains, such as medicine, sports, and finance. In many cases, to enable proper and reliable analyses of such data, the missing values are often imputed, and it is necessary that the method used has a low root mean square error (RMSE) between the imputed and the true values. In addition, for some critical applications, it is also often a requirement that the imputation method is scalable and the logic behind the imputation is explainable, which is especially difficult for complex methods that are, for example, based on deep learning. Based on these considerations, we propose a new algorithm named "conditional Distribution-based Imputation of Missing Values with Regularization" (DIMV). DIMV operates by determining the conditional distribution of a feature that has missing entries, using the information from the fully observed features as a basis. As will be illustrated via experiments in the paper, DIMV (i) gives a low RMSE for the imputed values compared to state-of-the-art methods; (ii) fast and scalable; (iii) is explainable as coefficients in a regression model, allowing reliable and trustable analysis, makes it a suitable choice for critical domains where understanding is important such as in medical fields, finance, etc; (iv) can provide an approximated confidence region for the missing values in a given sample; (v) suitable for both small and large scale data; (vi) in many scenarios, does not require a huge number of parameters as deep learning approaches; (vii) handle multicollinearity in imputation effectively; and (viii) is robust to the normally distributed assumption that its theoretical grounds rely on.

相關內容

In this paper we consider PIDEs with gradient-independent Lipschitz continuous nonlinearities and prove that deep neural networks with ReLU activation function can approximate solutions of such semilinear PIDEs without curse of dimensionality in the sense that the required number of parameters in the deep neural networks increases at most polynomially in both the dimension $ d $ of the corresponding PIDE and the reciprocal of the prescribed accuracy $\epsilon $.

We propose an augmented Lagrangian-based preconditioner to accelerate the convergence of Krylov subspace methods applied to linear systems of equations with a block three-by-three structure such as those arising from mixed finite element discretizations of the coupled Stokes-Darcy flow problem. We analyze the spectrum of the preconditioned matrix and we show how the new preconditioner can be efficiently applied. Numerical experiments are reported to illustrate the effectiveness of the preconditioner in conjunction with flexible GMRES for solving linear systems of equations arising from a 3D test problem.

Sequential location recommendation plays a huge role in modern life, which can enhance user experience, bring more profit to businesses and assist in government administration. Although methods for location recommendation have evolved significantly thanks to the development of recommendation systems, there is still limited utilization of geographic information, along with the ongoing challenge of addressing data sparsity. In response, we introduce a Proximity-aware based region representation for Sequential Recommendation (PASR for short), built upon the Self-Attention Network architecture. We tackle the sparsity issue through a novel loss function employing importance sampling, which emphasizes informative negative samples during optimization. Moreover, PASR enhances the integration of geographic information by employing a self-attention-based geography encoder to the hierarchical grid and proximity grid at each GPS point. To further leverage geographic information, we utilize the proximity-aware negative samplers to enhance the quality of negative samples. We conducted evaluations using three real-world Location-Based Social Networking (LBSN) datasets, demonstrating that PASR surpasses state-of-the-art sequential location recommendation methods

This article establishes novel strong uniform laws of large numbers for randomly weighted sums such as bootstrap means. By leveraging recent advances, these results extend previous work in their general applicability to a wide range of weighting procedures and in their flexibility with respect to the effective bootstrap sample size. In addition to the standard multinomial bootstrap and the m-out-of-n bootstrap, our results apply to a large class of randomly weighted sums involving negatively orthant dependent (NOD) weights, including the Bayesian bootstrap, jackknife, resampling without replacement, simple random sampling with over-replacement, independent weights, and multivariate Gaussian weighting schemes. Weights are permitted to be non-identically distributed and possibly even negative. Our proof technique is based on extending a proof of the i.i.d. strong uniform law of large numbers to employ strong laws for randomly weighted sums; in particular, we exploit a recent Marcinkiewicz--Zygmund strong law for NOD weighted sums.

Optimizing multiple competing objectives is a common problem across science and industry. The inherent inextricable trade-off between those objectives leads one to the task of exploring their Pareto front. A meaningful quantity for the purpose of the latter is the hypervolume indicator, which is used in Bayesian Optimization (BO) and Evolutionary Algorithms (EAs). However, the computational complexity for the calculation of the hypervolume scales unfavorably with increasing number of objectives and data points, which restricts its use in those common multi-objective optimization frameworks. To overcome these restrictions we propose to approximate the hypervolume function with a deep neural network, which we call DeepHV. For better sample efficiency and generalization, we exploit the fact that the hypervolume is scale-equivariant in each of the objectives as well as permutation invariant w.r.t. both the objectives and the samples, by using a deep neural network that is equivariant w.r.t. the combined group of scalings and permutations. We evaluate our method against exact, and approximate hypervolume methods in terms of accuracy, computation time, and generalization. We also apply and compare our methods to state-of-the-art multi-objective BO methods and EAs on a range of synthetic benchmark test cases. The results show that our methods are promising for such multi-objective optimization tasks.

We develop a provably efficient importance sampling scheme that estimates exit probabilities of solutions to small-noise stochastic reaction-diffusion equations from scaled neighborhoods of a stable equilibrium. The moderate deviation scaling allows for a local approximation of the nonlinear dynamics by their linearized version. In addition, we identify a finite-dimensional subspace where exits take place with high probability. Using stochastic control and variational methods we show that our scheme performs well both in the zero noise limit and pre-asymptotically. Simulation studies for stochastically perturbed bistable dynamics illustrate the theoretical results.

Randomized Controlled Trials (RCTs) may suffer from limited scope. In particular, samples may be unrepresentative: some RCTs over- or under- sample individuals with certain characteristics compared to the target population, for which one wants conclusions on treatment effectiveness. Re-weighting trial individuals to match the target population can improve the treatment effect estimation. In this work, we establish the exact expressions of the bias and variance of such reweighting procedures -- also called Inverse Propensity of Sampling Weighting (IPSW) -- in presence of categorical covariates for any sample size. Such results allow us to compare the theoretical performance of different versions of IPSW estimates. Besides, our results show how the performance (bias, variance, and quadratic risk) of IPSW estimates depends on the two sample sizes (RCT and target population). A by-product of our work is the proof of consistency of IPSW estimates. Results also reveal that IPSW performances are improved when the trial probability to be treated is estimated (rather than using its oracle counterpart). In addition, we study choice of variables: how including covariates that are not necessary for identifiability of the causal effect may impact the asymptotic variance. Including covariates that are shifted between the two samples but not treatment effect modifiers increases the variance while non-shifted but treatment effect modifiers do not. We illustrate all the takeaways in a didactic example, and on a semi-synthetic simulation inspired from critical care medicine.

Nonparametric maximum likelihood estimators (MLEs) in inverse problems often have non-normal limit distributions, like Chernoff's distribution. However, if one considers smooth functionals of the model, with corresponding functionals of the MLE, one gets normal limit distributions and faster rates of convergence. We demonstrate this for a model for the incubation time of a disease. The usual approach in the latter models is to use parametric distributions, like Weibull and gamma distributions, which leads to inconsistent estimators. Smoothed bootstrap methods are discussed for constructing confidence intervals. The classical bootstrap, based on the nonparametric MLE itself, has been proved to be inconsistent in this situation.

We observe a large variety of robots in terms of their bodies, sensors, and actuators. Given the commonalities in the skill sets, teaching each skill to each different robot independently is inefficient and not scalable when the large variety in the robotic landscape is considered. If we can learn the correspondences between the sensorimotor spaces of different robots, we can expect a skill that is learned in one robot can be more directly and easily transferred to the other robots. In this paper, we propose a method to learn correspondences between robots that have significant differences in their morphologies: a fixed-based manipulator robot with joint control and a differential drive mobile robot. For this, both robots are first given demonstrations that achieve the same tasks. A common latent representation is formed while learning the corresponding policies. After this initial learning stage, the observation of a new task execution by one robot becomes sufficient to generate a latent space representation pertaining to the other robot to achieve the same task. We verified our system in a set of experiments where the correspondence between two simulated robots is learned (1) when the robots need to follow the same paths to achieve the same task, (2) when the robots need to follow different trajectories to achieve the same task, and (3) when complexities of the required sensorimotor trajectories are different for the robots considered. We also provide a proof-of-the-concept realization of correspondence learning between a real manipulator robot and a simulated mobile robot.

A new mechanical model on noncircular shallow tunnelling considering initial stress field is proposed in this paper by constraining far-field ground surface to eliminate displacement singularity at infinity, and the originally unbalanced tunnel excavation problem in existing solutions is turned to an equilibrium one of mixed boundaries. By applying analytic continuation, the mixed boundaries are transformed to a homogenerous Riemann-Hilbert problem, which is subsequently solved via an efficient and accurate iterative method with boundary conditions of static equilibrium, displacement single-valuedness, and traction along tunnel periphery. The Lanczos filtering technique is used in the final stress and displacement solution to reduce the Gibbs phenomena caused by the constrained far-field ground surface for more accurte results. Several numerical cases are conducted to intensively verify the proposed solution by examining boundary conditions and comparing with existing solutions, and all the results are in good agreements. Then more numerical cases are conducted to investigate the stress and deformation distribution along ground surface and tunnel periphery, and several engineering advices are given. Further discussions on the defects of the proposed solution are also conducted for objectivity.

北京阿比特科技有限公司