Introduction. There is currently no guidance on how to assess the calibration of multistate models used for risk prediction. We introduce several techniques that can be used to produce calibration plots for the transition probabilities of a multistate model, before assessing their performance in the presence of non-informative and informative censoring through a simulation. Methods. We studied pseudo-values based on the Aalen-Johansen estimator, binary logistic regression with inverse probability of censoring weights (BLR-IPCW), and multinomial logistic regression with inverse probability of censoring weights (MLR-IPCW). The MLR-IPCW approach results in a calibration scatter plot, providing extra insight about the calibration. We simulated data with varying levels of censoring and evaluated the ability of each method to estimate the calibration curve for a set of predicted transition probabilities. We also developed evaluated the calibration of a model predicting the incidence of cardiovascular disease, type 2 diabetes and chronic kidney disease among a cohort of patients derived from linked primary and secondary healthcare records. Results. The pseudo-value, BLR-IPCW and MLR-IPCW approaches give unbiased estimates of the calibration curves under non-informative censoring. These methods remained unbiased in the presence of informative censoring, unless the mechanism was strongly informative, with bias concentrated in the areas of predicted transition probabilities of low density. Conclusions. We recommend implementing either the pseudo-value or BLR-IPCW approaches to produce a calibration curve, combined with the MLR-IPCW approach to produce a calibration scatter plot, which provides additional information over either of the other methods.
This paper considers the problem of detecting and tracking objects in a sequence of images. The problem is formulated in a filtering framework, using the output of object-detection algorithms as measurements. An extension to the filtering formulation is proposed that incorporates class information from the previous frame to robustify the classification, even if the object-detection algorithm outputs an incorrect prediction. Further, the properties of the object-detection algorithm are exploited to quantify the uncertainty of the bounding box detection in each frame. The complete filtering method is evaluated on camera trap images of the four large Swedish carnivores, bear, lynx, wolf, and wolverine. The experiments show that the class tracking formulation leads to a more robust classification.
The lock set method and the partial order method are two main approaches to guarantee that dynamic data race prediction remains efficient. There are many variations of these ideas. Common to all of them is the assumption that the events in a critical section belong to the same thread. We have evidence that critical sections in the wild do extend across thread boundaries even if the surrounding acquire and release events occur in the same thread. We introduce the novel concept of a cross-thread critical section to capture such situations, offer a theoretical comprehensive framework, and study their impact on state-of-the-art data race analyses. For sound partial order relations such as WCP, SDP, and DCtp, the occurrence of cross-thread critical sections negatively impacts their precision. For complete partial order relations such as WDP and PWR, cross-thread critical sections help to eliminate more false positives. The same (positive) impact applies to the lock set construction. Our experimental evaluation confirms that cross-thread critical sections arise in practice. For the complete relation PWR, we are able to reduce the number of false positives. The performance overhead incurred by tracking cross-thread critical sections slows down the analysis by 10\%-20\%, on average.
Distinguishing two classes of candidate models is a fundamental and practically important problem in statistical inference. Error rate control is crucial to the logic but, in complex nonparametric settings, such guarantees can be difficult to achieve, especially when the stopping rule that determines the data collection process is not available. In this paper we develop a novel e-process construction that leverages the so-called predictive recursion (PR) algorithm designed to rapidly and recursively fit nonparametric mixture models. The resulting PRe-process affords anytime valid inference uniformly over stopping rules and is shown to be efficient in the sense that it achieves the maximal growth rate under the alternative relative to the mixture model being fit by PR. In the special case of testing for a log-concave density, the PRe-process test is computationally simpler and faster, more stable, and no less efficient compared to a recently proposed anytime valid test.
Background. Joint range of motion (ROM) is an important quantitative measure for physical therapy. Commonly relying on a goniometer, accurate and reliable ROM measurement requires extensive training and practice. This, in turn, imposes a significant barrier for those who have limited in-person access to healthcare. Objective. The current study presents and evaluates an alternative machine learning-based ROM evaluation method that could be remotely accessed via a webcam. Methods. To evaluate its reliability, the ROM measurements for a diverse set of joints (neck, spine, and upper and lower extremities) derived using this method were compared to those obtained from a marker-based optical motion capture system. Results. Data collected from 25 healthy adults demonstrated that the webcam solution exhibited high test-retest reliability, with substantial to almost perfect intraclass correlation coefficients for most joints. Compared with the marker-based system, the webcam-based system demonstrated substantial to almost perfect inter-rater reliability for some joints, and lower inter-rater reliability for other joints (e.g., shoulder flexion and elbow flexion), which could be attributed to the reduced sensitivity to joint locations at the apex of the movement. Conclusions. The proposed webcam-based method exhibited high test-retest and inter-rater reliability, making it a versatile alternative for existing ROM evaluation methods in clinical practice and the tele-implementation of physical therapy and rehabilitation.
We tackle the extension to the vector-valued case of consistency results for Stepwise Uncertainty Reduction sequential experimental design strategies established in [Bect et al., A supermartingale approach to Gaussian process based sequential design of experiments, Bernoulli 25, 2019]. This lead us in the first place to clarify, assuming a compact index set, how the connection between continuous Gaussian processes and Gaussian measures on the Banach space of continuous functions carries over to vector-valued settings. From there, a number of concepts and properties from the aforementioned paper can be readily extended. However, vector-valued settings do complicate things for some results, mainly due to the lack of continuity for the pseudo-inverse mapping that affects the conditional mean and covariance function given finitely many pointwise observations. We apply obtained results to the Integrated Bernoulli Variance and the Expected Measure Variance uncertainty functionals employed in [Fossum et al., Learning excursion sets of vector-valued Gaussian random fields for autonomous ocean sampling, The Annals of Applied Statistics 15, 2021] for the estimation for excursion sets of vector-valued functions.
This paper presents a new weak Galerkin (WG) method for elliptic interface problems on general curved polygonal partitions. The method's key innovation lies in its ability to transform the complex interface jump condition into a more manageable Dirichlet boundary condition, simplifying the theoretical analysis significantly. The numerical scheme is designed by using locally constructed weak gradient on the curved polygonal partitions. We establish error estimates of optimal order for the numerical approximation in both discrete $H^1$ and $L^2$ norms. Additionally, we present various numerical results that serve to illustrate the robust numerical performance of the proposed WG interface method.
The mode shape function is difficult to determine in modeling manipulators with flexible links using the assumed mode method. In this paper, for a planar 3-RRR parallel manipulator with flexible actuation links, we provide a data-driven method to identify the mode shape of the flexible links and propose a model-based controller for the vibration suppression. By deriving the inverse kinematics of the studied mechanism in analytical form, the dynamic model is established by using the assumed mode method. To select the mode shape function, the software of multi-body system dynamics is used to simulate the dynamic behavior of the mechanism, and then the data-driven method which combines the DMD and SINDy algorithms is employed to identify the reasonable mode shape functions for the flexible links. To suppress the vibration of the flexible links, a state observer for the end-effector is constructed by a neural network, and the model-based control law is designed on this basis. In comparison with the model-free controller, the proposed controller with developed dynamic model has promising performance in terms of tracking accuracy and vibration suppression.
Learning and predicting the dynamics of physical systems requires a profound understanding of the underlying physical laws. Recent works on learning physical laws involve generalizing the equation discovery frameworks to the discovery of Hamiltonian and Lagrangian of physical systems. While the existing methods parameterize the Lagrangian using neural networks, we propose an alternate framework for learning interpretable Lagrangian descriptions of physical systems from limited data using the sparse Bayesian approach. Unlike existing neural network-based approaches, the proposed approach (a) yields an interpretable description of Lagrangian, (b) exploits Bayesian learning to quantify the epistemic uncertainty due to limited data, (c) automates the distillation of Hamiltonian from the learned Lagrangian using Legendre transformation, and (d) provides ordinary (ODE) and partial differential equation (PDE) based descriptions of the observed systems. Six different examples involving both discrete and continuous system illustrates the efficacy of the proposed approach.
With observational data alone, causal structure learning is a challenging problem. The task becomes easier when having access to data collected from perturbations of the underlying system, even when the nature of these is unknown. Existing methods either do not allow for the presence of latent variables or assume that these remain unperturbed. However, these assumptions are hard to justify if the nature of the perturbations is unknown. We provide results that enable scoring causal structures in the setting with additive, but unknown interventions. Specifically, we propose a maximum-likelihood estimator in a structural equation model that exploits system-wide invariances to output an equivalence class of causal structures from perturbation data. Furthermore, under certain structural assumptions on the population model, we provide a simple graphical characterization of all the DAGs in the interventional equivalence class. We illustrate the utility of our framework on synthetic data as well as real data involving California reservoirs and protein expressions. The software implementation is available as the Python package \emph{utlvce}.
In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.