亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We tackle the extension to the vector-valued case of consistency results for Stepwise Uncertainty Reduction sequential experimental design strategies established in [Bect et al., A supermartingale approach to Gaussian process based sequential design of experiments, Bernoulli 25, 2019]. This lead us in the first place to clarify, assuming a compact index set, how the connection between continuous Gaussian processes and Gaussian measures on the Banach space of continuous functions carries over to vector-valued settings. From there, a number of concepts and properties from the aforementioned paper can be readily extended. However, vector-valued settings do complicate things for some results, mainly due to the lack of continuity for the pseudo-inverse mapping that affects the conditional mean and covariance function given finitely many pointwise observations. We apply obtained results to the Integrated Bernoulli Variance and the Expected Measure Variance uncertainty functionals employed in [Fossum et al., Learning excursion sets of vector-valued Gaussian random fields for autonomous ocean sampling, The Annals of Applied Statistics 15, 2021] for the estimation for excursion sets of vector-valued functions.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Threshold selection is a fundamental problem in any threshold-based extreme value analysis. While models are asymptotically motivated, selecting an appropriate threshold for finite samples can be difficult through standard methods. Inference can also be highly sensitive to the choice of threshold. Too low a threshold choice leads to bias in the fit of the extreme value model, while too high a choice leads to unnecessary additional uncertainty in the estimation of model parameters. In this paper, we develop a novel methodology for automated threshold selection that directly tackles this bias-variance trade-off. We also develop a method to account for the uncertainty in this threshold choice and propagate this uncertainty through to high quantile inference. Through a simulation study, we demonstrate the effectiveness of our method for threshold selection and subsequent extreme quantile estimation. We apply our method to the well-known, troublesome example of the River Nidd dataset.

Linear regression and classification methods with repeated functional data are considered. For each statistical unit in the sample, a real-valued parameter is observed over time under different conditions. Two regression methods based on fusion penalties are presented. The first one is a generalization of the variable fusion methodology based on the 1-nearest neighbor. The second one, called group fusion lasso, assumes some grouping structure of conditions and allows for homogeneity among the regression coefficient functions within groups. A finite sample numerical simulation and an application on EEG data are presented.

Sequential neural posterior estimation (SNPE) techniques have been recently proposed for dealing with simulation-based models with intractable likelihoods. Unlike approximate Bayesian computation, SNPE techniques learn the posterior from sequential simulation using neural network-based conditional density estimators by minimizing a specific loss function. The SNPE method proposed by Lueckmann et al. (2017) used a calibration kernel to boost the sample weights around the observed data, resulting in a concentrated loss function. However, the use of calibration kernels may increase the variances of both the empirical loss and its gradient, making the training inefficient. To improve the stability of SNPE, this paper proposes to use an adaptive calibration kernel and several variance reduction techniques. The proposed method greatly speeds up the process of training, and provides a better approximation of the posterior than the original SNPE method and some existing competitors as confirmed by numerical experiments.

We construct an efficient class of increasingly high-order (up to 17th-order) essentially non-oscillatory schemes with multi-resolution (ENO-MR) for solving hyperbolic conservation laws. The candidate stencils for constructing ENO-MR schemes range from first-order one-point stencil increasingly up to the designed very high-order stencil. The proposed ENO-MR schemes adopt a very simple and efficient strategy that only requires the computation of the highest-order derivatives of a part of candidate stencils. Besides simplicity and high efficiency, ENO-MR schemes are completely parameter-free and essentially scale-invariant. Theoretical analysis and numerical computations show that ENO-MR schemes achieve designed high-order convergence in smooth regions which may contain high-order critical points (local extrema) and retain ENO property for strong shocks. In addition, ENO-MR schemes could capture complex flow structures very well.

Adjustment of statistical significance levels for repeated analysis in group sequential trials has been understood for some time. Similarly, methods for adjustment accounting for testing multiple hypotheses are common. There is limited research on simultaneously adjusting for both multiple hypothesis testing and multiple analyses of one or more hypotheses. We address this gap by proposing adjusted-sequential p-values that reject an elementary hypothesis when its adjusted-sequential p-values are less than or equal to the family-wise Type I error rate (FWER) in a group sequential design. We also propose sequential p-values for intersection hypotheses as a tool to compute adjusted sequential p-values for elementary hypotheses. We demonstrate the application using weighted Bonferroni tests and weighted parametric tests, comparing adjusted sequential p-values to a desired FWER for inference on each elementary hypothesis tested.

The responsibility of a method/function is to perform some desired computations and disseminate the results to its caller through various deliverables, including object fields and variables in output instructions. Based on this definition of responsibility, this paper offers a new algorithm to refactor long methods to those with a single responsibility. We propose a backward slicing algorithm to decompose a long method into slightly overlapping slices. The slices are computed for each output instruction, representing the outcome of a responsibility delegated to the method. The slices will be non-overlapping if the slicing criteria address the same output variable. The slices are further extracted as independent methods, invoked by the original method if certain behavioral preservations are made. The proposed method has been evaluated on the GEMS extract method refactoring benchmark and three real-world projects. On average, our experiments demonstrate at least a 29.6% improvement in precision and a 12.1% improvement in the recall of uncovering refactoring opportunities compared to the state-of-the-art approaches. Furthermore, our tool improves method-level cohesion metrics by an average of 20% after refactoring. Experimental results confirm the applicability of the proposed approach in extracting methods with a single responsibility.

We consider the problem of sequential change detection, where the goal is to design a scheme for detecting any changes in a parameter or functional $\theta$ of the data stream distribution that has small detection delay, but guarantees control on the frequency of false alarms in the absence of changes. In this paper, we describe a simple reduction from sequential change detection to sequential estimation using confidence sequences: we begin a new $(1-\alpha)$-confidence sequence at each time step, and proclaim a change when the intersection of all active confidence sequences becomes empty. We prove that the average run length is at least $1/\alpha$, resulting in a change detection scheme with minimal structural assumptions~(thus allowing for possibly dependent observations, and nonparametric distribution classes), but strong guarantees. Our approach bears an interesting parallel with the reduction from change detection to sequential testing of Lorden (1971) and the e-detector of Shin et al. (2022).

We consider the problem of aggregating the judgements of a group of experts to form a single prior distribution representing the judgements of the group. We develop a Bayesian hierarchical model to reconcile the judgements of the group of experts based on elicited quantiles for continuous quantities and probabilities for one-off events. Previous Bayesian reconciliation methods have not been used widely, if at all, in contrast to pooling methods and consensus-based approaches. To address this we embed Bayesian reconciliation within the probabilistic Delphi method. The result is to furnish the outcome of the probabilistic Delphi method with a direct probabilistic interpretation, with the resulting prior representing the judgements of the decision maker. We can use the rationales from the Delphi process to group the experts for the hierarchical modelling. We illustrate the approach with applications to studies evaluating erosion in embankment dams and pump failures in a water pumping station, and assess the properties of the approach using the TU Delft database of expert judgement studies. We see that, even using an off-the-shelf implementation of the approach, it out-performs individual experts, equal weighting of experts and the classical method based on the log score.

When modeling scientific and industrial problems, geometries are typically modeled by explicit boundary representations obtained from computer-aided design software. Unfitted (also known as embedded or immersed) finite element methods offer a significant advantage in dealing with complex geometries, eliminating the need for generating unstructured body-fitted meshes. However, current unfitted finite elements on nonlinear geometries are restricted to implicit (possibly high-order) level set geometries. In this work, we introduce a novel automatic computational pipeline to approximate solutions of partial differential equations on domains defined by explicit nonlinear boundary representations. For the geometrical discretization, we propose a novel algorithm to generate quadratures for the bulk and surface integration on nonlinear polytopes required to compute all the terms in unfitted finite element methods. The algorithm relies on a nonlinear triangulation of the boundary, a kd-tree refinement of the surface cells that simplify the nonlinear intersections of surface and background cells to simple cases that are diffeomorphically equivalent to linear intersections, robust polynomial root-finding algorithms and surface parameterization techniques. We prove the correctness of the proposed algorithm. We have successfully applied this algorithm to simulate partial differential equations with unfitted finite elements on nonlinear domains described by computer-aided design models, demonstrating the robustness of the geometric algorithm and showing high-order accuracy of the overall method.

We propose and compare methods for the analysis of extreme events in complex systems governed by PDEs that involve random parameters, in situations where we are interested in quantifying the probability that a scalar function of the system's solution is above a threshold. If the threshold is large, this probability is small and its accurate estimation is challenging. To tackle this difficulty, we blend theoretical results from large deviation theory (LDT) with numerical tools from PDE-constrained optimization. Our methods first compute parameters that minimize the LDT-rate function over the set of parameters leading to extreme events, using adjoint methods to compute the gradient of this rate function. The minimizers give information about the mechanism of the extreme events as well as estimates of their probability. We then propose a series of methods to refine these estimates, either via importance sampling or geometric approximation of the extreme event sets. Results are formulated for general parameter distributions and detailed expressions are provided when Gaussian distributions. We give theoretical and numerical arguments showing that the performance of our methods is insensitive to the extremeness of the events we are interested in. We illustrate the application of our approach to quantify the probability of extreme tsunami events on shore. Tsunamis are typically caused by a sudden, unpredictable change of the ocean floor elevation during an earthquake. We model this change as a random process, which takes into account the underlying physics. We use the one-dimensional shallow water equation to model tsunamis numerically. In the context of this example, we present a comparison of our methods for extreme event probability estimation, and find which type of ocean floor elevation change leads to the largest tsunamis on shore.

北京阿比特科技有限公司