亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we study a non-local Cahn-Hilliard equation with singular single-well potential and degenerate mobility. This results as a particular case of a more general model derived for a binary, saturated, closed and incompressible mixture, composed by a tumor phase and a healthy phase, evolving in a bounded domain. The general system couples a Darcy-type evolution for the average velocity field with a convective reaction-diffusion type evolution for the nutrient concentration and a non-local convective Cahn-Hilliard equation for the tumor phase. The main mathematical difficulties are related to the proof of the separation property for the tumor phase in the Cahn-Hilliard equation: up to our knowledge, such problem is indeed open in the literature. For this reason, in the present contribution we restrict the analytical study to the Cahn-Hilliard equation only. For the non-local Cahn- Hilliard equation with singular single-well potential and degenerate mobility, we study the existence and uniqueness of weak solutions for spatial dimensions $d\leq 3$. After showing existence, we prove the strict separation property in three spatial dimensions, implying the same property also for lower spatial dimensions, which opens the way to the proof of uniqueness of solutions. Finally, we propose a well posed and gradient stable continuous finite element approximation of the model for $d\leq 3$, which preserves the physical properties of the continuos solution and which is computationally efficient, and we show simulation results in two spatial dimensions which prove the consistency of the proposed scheme and which describe the phase ordering dynamics associated to the system.

相關內容

To minimize the average of a set of log-convex functions, the stochastic Newton method iteratively updates its estimate using subsampled versions of the full objective's gradient and Hessian. We contextualize this optimization problem as sequential Bayesian inference on a latent state-space model with a discriminatively-specified observation process. Applying Bayesian filtering then yields a novel optimization algorithm that considers the entire history of gradients and Hessians when forming an update. We establish matrix-based conditions under which the effect of older observations diminishes over time, in a manner analogous to Polyak's heavy ball momentum. We illustrate various aspects of our approach with an example and review other relevant innovations for the stochastic Newton method.

Ghost, or fictitious points allow to capture boundary conditions that are not located on the finite difference grid discretization. We explore in this paper the impact of ghost points on the stability of the explicit Euler finite difference scheme in the context of the diffusion equation. In particular, we consider the case of a one-touch option under the Black-Scholes model. The observations and results are however valid for a much wider range of financial contracts and models.

In this paper we develop a numerical method for efficiently approximating solutions of certain Zakai equations in high dimensions. The key idea is to transform a given Zakai SPDE into a PDE with random coefficients. We show that under suitable regularity assumptions on the coefficients of the Zakai equation, the corresponding random PDE admits a solution random field which, for almost all realizations of the random coefficients, can be written as a classical solution of a linear parabolic PDE. This makes it possible to apply the Feynman--Kac formula to obtain an efficient Monte Carlo scheme for computing approximate solutions of Zakai equations. The approach achieves good results in up to 25 dimensions with fast run times.

In the present paper, we develop a new goodness-of-fit test for the Birnbaum- Saunders distribution based on the probability plot. We utilize the sample correlation coefficient from the Birnbaum-Saunders probability plot as a measure of goodness of fit. Unfortunately, it is impossible or extremely difficult to obtain an explicit distribution of this sample correlation coefficient. To address this challenge, we employ extensive Monte Carlo simulations to obtain the empirical distribution of the sample correlation coefficient from the Birnbaum-Saunders probability plot. This empirical distribution allows us to determine the critical values alongside their corresponding significance levels, thus facilitating the computation of the p-value when the sample correlation coefficient is obtained. Finally, two real-data examples are provided for illustrative purposes.

This work is concerned with kinetic equations with velocity of constant magnitude. We propose a quadrature method of moments based on the Poisson kernel, called Poisson-EQMOM. The derived moment closure systems are well defined for all physically relevant moments and the resultant approximations of the distribution function converge as the number of moments goes to infinity. The convergence makes our method stand out from most existing moment methods. Moreover, we devise a delicate moment inversion algorithm. As an application, the Vicsek model is studied for overdamped active particles. Then the Poisson-EQMOM is validated with a series of numerical tests including spatially homogeneous, one-dimensional and two-dimensional problems.

A standard approach to solve ordinary differential equations, when they describe dynamical systems, is to adopt a Runge-Kutta or related scheme. Such schemes, however, are not applicable to the large class of equations which do not constitute dynamical systems. In several physical systems, we encounter integro-differential equations with memory terms where the time derivative of a state variable at a given time depends on all past states of the system. Secondly, there are equations whose solutions do not have well-defined Taylor series expansion. The Maxey-Riley-Gatignol equation, which describes the dynamics of an inertial particle in nonuniform and unsteady flow, displays both challenges. We use it as a test bed to address the questions we raise, but our method may be applied to all equations of this class. We show that the Maxey-Riley-Gatignol equation can be embedded into an extended Markovian system which is constructed by introducing a new dynamical co-evolving state variable that encodes memory of past states. We develop a Runge-Kutta algorithm for the resultant Markovian system. The form of the kernels involved in deriving the Runge-Kutta scheme necessitates the use of an expansion in powers of $t^{1/2}$. Our approach naturally inherits the benefits of standard time-integrators, namely a constant memory storage cost, a linear growth of operational effort with simulation time, and the ability to restart a simulation with the final state as the new initial condition.

In this paper, we study a numerical artifact of solving the nonlinear shallow water equations with a discontinuous bottom topography. For various first-order schemes, the numerical solution of the momentum will form a spurious spike at the discontinuous points of the bottom, which should not exist in the exact solution. The height of the spike cannot be reduced even after the mesh is refined. For subsonic problems, this numerical artifact may cause the wrong convergence to a function far away from the exact solution. To explain the formation of the spurious spike, we perform a convergence analysis by proving a Lax--Wendroff type theorem. It is shown that the spurious spike is caused by the numerical viscosity in the computation of the water height at the discontinuous bottom. The height of the spike is proportional to the magnitude of the viscosity constant in the Lax--Friedrichs flux. Motivated by this conclusion, we propose a modified scheme by adopting the central flux at the bottom discontinuity in the equation of mass conservation, and show that this numerical artifact can be removed in many cases. For various numerical tests with nontransonic Riemann solutions, we observe that the modified scheme is able to retrieve the correct convergence.

We study the scaling limits of stochastic gradient descent (SGD) with constant step-size in the high-dimensional regime. We prove limit theorems for the trajectories of summary statistics (i.e., finite-dimensional functions) of SGD as the dimension goes to infinity. Our approach allows one to choose the summary statistics that are tracked, the initialization, and the step-size. It yields both ballistic (ODE) and diffusive (SDE) limits, with the limit depending dramatically on the former choices. We show a critical scaling regime for the step-size, below which the effective ballistic dynamics matches gradient flow for the population loss, but at which, a new correction term appears which changes the phase diagram. About the fixed points of this effective dynamics, the corresponding diffusive limits can be quite complex and even degenerate. We demonstrate our approach on popular examples including estimation for spiked matrix and tensor models and classification via two-layer networks for binary and XOR-type Gaussian mixture models. These examples exhibit surprising phenomena including multimodal timescales to convergence as well as convergence to sub-optimal solutions with probability bounded away from zero from random (e.g., Gaussian) initializations. At the same time, we demonstrate the benefit of overparametrization by showing that the latter probability goes to zero as the second layer width grows.

This study presents a novel high-order numerical method designed for solving the two-dimensional time-fractional convection-diffusion (TFCD) equation. The Caputo definition is employed to characterize the time-fractional derivative. A weak singularity at the initial time ($t=0$) is encountered in the considered problem, which is effectively managed by adopting a discretization approach for the time-fractional derivative, where Alikhanov's high-order L2-1$_\sigma$ formula is applied on a non-uniform fitted mesh, resulting in successful tackling of the singularity. A high-order two-dimensional compact operator is implemented to approximate the spatial variables. The alternating direction implicit (ADI) approach is then employed to solve the resulting system of equations by decomposing the two-dimensional problem into two separate one-dimensional problems. The theoretical analysis, encompassing both stability and convergence aspects, has been conducted comprehensively, and it has shown that method is convergent with an order $\mathcal O\left(N_t^{-\min\{3-\alpha,\theta\alpha,1+2\alpha,2+\alpha\}}+h_x^4+h_y^4\right)$, where $\alpha\in(0,1)$ represents the order of the fractional derivative, $N_t$ is the temporal discretization parameter and $h_x$ and $h_y$ represent spatial mesh widths. Moreover, the parameter $\theta$ is utilized in the construction of the fitted mesh.

This paper focuses on investigating the density convergence of a fully discrete finite difference method when applied to numerically solve the stochastic Cahn--Hilliard equation driven by multiplicative space-time white noises. The main difficulty lies in the control of the drift coefficient that is neither globally Lipschitz nor one-sided Lipschitz. To handle this difficulty, we propose a novel localization argument and derive the strong convergence rate of the numerical solution to estimate the total variation distance between the exact and numerical solutions. This along with the existence of the density of the numerical solution finally yields the convergence of density in $L^1(\mathbb{R})$ of the numerical solution. Our results partially answer positively to the open problem emerged in [J. Cui and J. Hong, J. Differential Equations (2020)] on computing the density of the exact solution numerically.

北京阿比特科技有限公司