In this paper, we consider the problem of parameter estimating for a family of exponential distributions. We develop the improved estimation method, which generalized the James--Stein approach for a wide class of distributions. The proposed estimator dominates the classical maximum likelihood estimator under the quadratic risk. The estimating procedure is applied to special cases of distributions. The numerical simulations results are given.
We consider two decision problems in infinite groups. The first problem is Subgroup Intersection: given two finitely generated subgroups $\langle \mathcal{G} \rangle, \langle \mathcal{H} \rangle$ of a group $G$, decide whether the intersection $\langle \mathcal{G} \rangle \cap \langle \mathcal{H} \rangle$ is trivial. The second problem is Coset Intersection: given two finitely generated subgroups $\langle \mathcal{G} \rangle, \langle \mathcal{H} \rangle$ of a group $G$, as well as elements $g, h \in G$, decide whether the intersection of the two cosets $g \langle \mathcal{G} \rangle \cap h \langle \mathcal{H} \rangle$ is empty. We show that both problems are decidable in finitely generated abelian-by-cyclic groups. In particular, we reduce them to the Shifted Monomial Membership problem (whether an ideal of the Laurent polynomial ring over integers contains any element of the form $X^z - f,\; z \in \mathbb{Z} \setminus \{0\}$). We also point out some obstacles for generalizing these results from abelian-by-cyclic groups to arbitrary metabelian groups.
We consider the problem of estimating the marginal independence structure of a Bayesian network from observational data in the form of an undirected graph called the unconditional dependence graph. We show that unconditional dependence graphs of Bayesian networks correspond to the graphs having equal independence and intersection numbers. Using this observation, a Gr\"obner basis for a toric ideal associated to unconditional dependence graphs of Bayesian networks is given and then extended by additional binomial relations to connect the space of all such graphs. An MCMC method, called GrUES (Gr\"obner-based Unconditional Equivalence Search), is implemented based on the resulting moves and applied to synthetic Gaussian data. GrUES recovers the true marginal independence structure via a penalized maximum likelihood or MAP estimate at a higher rate than simple independence tests while also yielding an estimate of the posterior, for which the $20\%$ HPD credible sets include the true structure at a high rate for data-generating graphs with density at least $0.5$.
The aim of this paper is twofold. We first provide a new orientation theorem which gives a natural and simple proof of a result of Gao, Yang \cite{GY} on matroid-reachability-based packing of mixed arborescences in mixed graphs by reducing it to the corresponding theorem of Cs. Kir\'aly \cite{cskir} on directed graphs. Moreover, we extend another result of Gao, Yang \cite{GY2} by providing a new theorem on mixed hypergraphs having a packing of mixed hyperarborescences such that their number is at least $\ell$ and at most $\ell'$, each vertex belongs to exactly $k$ of them, and each vertex $v$ is the root of least $f(v)$ and at most $g(v)$ of them.
This paper investigates the problem of estimating the larger location parameter of two general location families from a decision-theoretic perspective. In this estimation problem, we use the criteria of minimizing the risk function and the Pitman closeness under a general bowl-shaped loss function. Inadmissibility of a general location and equivariant estimators is provided. We prove that a natural estimator (analogue of the BLEE of unordered location parameters) is inadmissible, under certain conditions on underlying densities, and propose a dominating estimator. We also derive a class of improved estimators using the Kubokawa's IERD approach and observe that the boundary estimator of this class is the Brewster-Zidek type estimator. Additionally, under the generalized Pitman criterion, we show that the natural estimator is inadmissible and obtain improved estimators. The results are implemented for different loss functions, and explicit expressions for the dominating estimators are provided. We explore the applications of these results to for exponential and normal distribution under specified loss functions. A simulation is also conducted to compare the risk performance of the proposed estimators. Finally, we present a real-life data analysis to illustrate the practical applications of the paper's findings.
In this paper, we consider objective Bayesian inference of the generalized exponential distribution using the independence Jeffreys prior and validate the propriety of the posterior distribution under a family of structured priors. We propose an efficient sampling algorithm via the generalized ratio-of-uniforms method to draw samples for making posterior inference. We carry out simulation studies to assess the finite-sample performance of the proposed Bayesian approach. Finally, a real-data application is provided for illustrative purposes.
In this paper, we investigate the spectral properties of the sample canonical correlation (SCC) matrix under the alternative hypothesis to provide a more comprehensive description of the association between two sets of variables. Our research involves establishing the relationship between the eigenvalues of the SCC matrix and the block correlation matrix, as well as proving the universality of the Stieltjes transform of the limiting spectral distribution (LSD) of the block correlation matrix. By combining the results from the normal case, we establish the limiting spectral distribution (LSD) of the SCC matrix with a general underlying distribution under the arbitrary rank alternative hypothesis. Finally, we present several simulated examples and find that they fit well with our theoretical results.
We propose a new class of models for variable clustering called Asymptotic Independent block (AI-block) models, which defines population-level clusters based on the independence of the maxima of a multivariate stationary mixing random process among clusters. This class of models is identifiable, meaning that there exists a maximal element with a partial order between partitions, allowing for statistical inference. We also present an algorithm for recovering the clusters of variables without specifying the number of clusters \emph{a priori}. Our work provides some theoretical insights into the consistency of our algorithm, demonstrating that under certain conditions it can effectively identify clusters in the data with a computational complexity that is polynomial in the dimension. This implies that groups can be learned nonparametrically in which block maxima of a dependent process are only sub-asymptotic. To further illustrate the significance of our work, we applied our method to neuroscience and environmental real-datasets. These applications highlight the potential and versatility of the proposed approach.
Selfadhesivity is a property of entropic polymatroids which guarantees that the polymatroid can be glued to an identical copy of itself along arbitrary restrictions such that the two pieces are independent given the common restriction. We show that positive definite matrices satisfy this condition as well and examine consequences for Gaussian conditional independence structures. New axioms of Gaussian CI are obtained by applying selfadhesivity to the previously known axioms of structural semigraphoids and orientable gaussoids.
Discovering causal relationships from observational data is a fundamental yet challenging task. In some applications, it may suffice to learn the causal features of a given response variable, instead of learning the entire underlying causal structure. Invariant causal prediction (ICP, Peters et al., 2016) is a method for causal feature selection which requires data from heterogeneous settings. ICP assumes that the mechanism for generating the response from its direct causes is the same in all settings and exploits this invariance to output a subset of the causal features. The framework of ICP has been extended to general additive noise models and to nonparametric settings using conditional independence testing. However, nonparametric conditional independence testing often suffers from low power (or poor type I error control) and the aforementioned parametric models are not suitable for applications in which the response is not measured on a continuous scale, but rather reflects categories or counts. To bridge this gap, we develop ICP in the context of transformation models (TRAMs), allowing for continuous, categorical, count-type, and uninformatively censored responses (we show that, in general, these model classes do not allow for identifiability when there is no exogenous heterogeneity). We propose TRAM-GCM, a test for invariance of a subset of covariates, based on the expected conditional covariance between environments and score residuals which satisfies uniform asymptotic level guarantees. For the special case of linear shift TRAMs, we propose an additional invariance test, TRAM-Wald, based on the Wald statistic. We implement both proposed methods in the open-source R package "tramicp" and show in simulations that under the correct model specification, our approach empirically yields higher power than nonparametric ICP based on conditional independence testing.
In the present study, we investigate and compare reasoning in large language models (LLM) and humans using a selection of cognitive psychology tools traditionally dedicated to the study of (bounded) rationality. To do so, we presented to human participants and an array of pretrained LLMs new variants of classical cognitive experiments, and cross-compared their performances. Our results showed that most of the included models presented reasoning errors akin to those frequently ascribed to error-prone, heuristic-based human reasoning. Notwithstanding this superficial similarity, an in-depth comparison between humans and LLMs indicated important differences with human-like reasoning, with models limitations disappearing almost entirely in more recent LLMs releases. Moreover, we show that while it is possible to devise strategies to induce better performance, humans and machines are not equally-responsive to the same prompting schemes. We conclude by discussing the epistemological implications and challenges of comparing human and machine behavior for both artificial intelligence and cognitive psychology.