This work proposes a new stabilized $P_1\times P_0$ finite element method for solving the incompressible Navier--Stokes equations. The numerical scheme is based on a reduced Bernardi--Raugel element with statically condensed face bubbles and is pressure-robust in the small viscosity regime. For the Stokes problem, an error estimate uniform with respect to the kinematic viscosity is shown. For the Navier--Stokes equation, the nonlinear convection term is discretized using an edge-averaged finite element method. In comparison with classical schemes, the proposed method does not require tuning of parameters and is validated for competitiveness on several benchmark problems in 2 and 3 dimensional space.
We present augmented Lagrangian Schur complement preconditioners and robust multigrid methods for incompressible Stokes problems with extreme viscosity variations. Such Stokes systems arise, for instance, upon linearization of nonlinear viscous flow problems, and they can have severely inhomogeneous and anisotropic coefficients. Using an augmented Lagrangian formulation for the incompressibility constraint makes the Schur complement easier to approximate, but results in a nearly singular (1,1)-block in the Stokes system. We present eigenvalue estimates for the quality of the Schur complement approximation. To cope with the near-singularity of the (1,1)-block, we extend a multigrid scheme with a discretization-dependent smoother and transfer operators from triangular/tetrahedral to the quadrilateral/hexahedral finite element discretizations $[\mathbb{Q}_k]^d\times \mathbb{P}_{k-1}^{\text{disc}}$, $k\geq 2$, $d=2,3$. Using numerical examples with scalar and with anisotropic fourth-order tensor viscosity arising from linearization of a viscoplastic constitutive relation, we confirm the robustness of the multigrid scheme and the overall efficiency of the solver. We present scalability results using up to 28,672 parallel tasks for problems with up to 1.6 billion unknowns and a viscosity contrast up to ten orders of magnitude.
We present a mesh-independent and parameter-robust multigrid solver for the Scott-Vogelius discretisation of the nearly incompressible linear elasticity equations on meshes with a macro element structure. The discretisation achieves exact representation of the limiting divergence constraint at moderate polynomial degree. Both the relaxation and multigrid transfer operators exploit the macro structure for robustness and efficiency. For the relaxation, we use the existence of local Fortin operators on each macro cell to construct a local space decomposition with parameter-robust convergence. For the transfer, we construct a robust prolongation operator by performing small local solves over each coarse macro cell. The necessity of both components of the algorithm is confirmed by numerical experiments.
In this paper, we take a fresh look at using spectral analysis for assessing locking phenomena in finite element formulations. We propose to "measure" locking by comparing the difference between eigenvalue and mode error curves computed on coarse meshes with "asymptotic" error curves computed on "overkill" meshes, both plotted with respect to the normalized mode number. To demonstrate the intimate relation between membrane locking and spectral accuracy, we focus on the example of a circular ring discretized with isogeometric curved Euler-Bernoulli beam elements. We show that the transverse-displacement-dominating modes are locking-prone, while the circumferential-displacement-dominating modes are naturally locking-free. We use eigenvalue and mode errors to assess five isogeometric finite element formulations in terms of their locking-related efficiency: the displacement-based formulation with full and reduced integration and three locking-free formulations based on the B-bar, discrete strain gap and Hellinger-Reissner methods. Our study shows that spectral analysis uncovers locking-related effects across the spectrum of eigenvalues and eigenmodes, rigorously characterizing membrane locking in the displacement-based formulation and unlocking in the locking-free formulations.
Fiber-reinforced soft biological tissues are typically modeled as hyperelastic, anisotropic, and nearly incompressible materials. To enforce incompressibility a multiplicative split of the deformation gradient into a volumetric and an isochoric part is a very common approach. However, due to the high stiffness of anisotropic materials in the preferred directions, the finite element analysis of such problems often suffers from severe locking effects and numerical instabilities. In this paper, we present novel methods to overcome locking phenomena for anisotropic materials using stabilized P1-P1 elements. We introduce different stabilization techniques and demonstrate the high robustness and computational efficiency of the chosen methods. In several benchmark problems we compare the approach to standard linear elements and show the accuracy and versatility of the methods to simulate anisotropic, nearly and fully incompressible materials. We are convinced that this numerical framework offers the possibility to accelerate accurate simulations of biological tissues, enabling patient-specfic parameterization studies, which require numerous forward simulations.
We demonstrate a method for localizing where two smooths differ using a true discovery proportion (TDP) based interpretation. The procedure yields a statement on the proportion of some region where true differences exist between two smooths, which results from use of hypothesis tests on collections of basis coefficients parametrizing the smooths. The methodology avoids otherwise ad hoc means of doing so such as performing hypothesis tests on entire smooths of subsetted data. TDP estimates are 1-alpha confidence bounded simultaneously, assuring that the estimate for a region is a lower bound on the proportion of actual difference, or true discoveries, in that region with high confidence regardless of the number, location, or size of regions for which TDP is estimated. Our procedure is based on closed-testing using Simes local test. We develop expressions for the covariance of quadratic forms because of the multiple regression framework in which we use closed-testing results, which are shown to be non-negative in many settings. Our procedure is well-powered because of a result on the off-diagonal decay structure of the covariance matrix of penalized B-splines of degree two or less. We demonstrate achievement of estimated TDP in simulation for different specified alpha levels and degree of difference and analyze a data set of walking gait of cerebral palsy patients. Keywords: splines; smoothing; multiple testing; closed-testing; simultaneous confidence
We consider phase-field models with and without lateral flow for the numerical simulation of lateral phase separation and coarsening in lipid membranes. For the numerical solution of these models, we apply an unfitted finite element method that is flexible in handling complex and possibly evolving shapes in the absence of an explicit surface parametrization. Through several numerical tests, we investigate the effect of the presence of lateral flow on the evolution of phases. In particular, we focus on understanding how variable line tension, viscosity, membrane composition, and surface shape affect the pattern formation. Keywords: Lateral phase separation, surface Cahn-Hilliard equation, lateral flow, surface Navier-Stokes-Cahn-Hilliard system, TraceFEM
We consider flux-corrected finite element discretizations of 3D convection-dominated transport problems and assess the computational efficiency of algorithms based on such approximations. The methods under investigation include flux-corrected transport schemes and monolithic limiters. We discretize in space using a continuous Galerkin method and $\mathbb{P}_1$ or $\mathbb{Q}_1$ finite elements. Time integration is performed using the Crank-Nicolson method or an explicit strong stability preserving Runge-Kutta method. Nonlinear systems are solved using a fixed-point iteration method, which requires solution of large linear systems at each iteration or time step. The great variety of options in the choice of discretization methods and solver components calls for a dedicated comparative study of existing approaches. To perform such a study, we define new 3D test problems for time-dependent and stationary convection-diffusion-reaction equations. The results of our numerical experiments illustrate how the limiting technique, time discretization and solver impact on the overall performance.
In the paper, an approach for the numerical solution of stationary nonlinear Navier-Stokes equations in rotation and convective forms in a polygonal domain containing one reentrant corner on its boundary, that is, a corner greater than ${\pi}$ is considered. The method allows us to obtain the 1st order of convergence of the approximate solution to the exact one with respect to the grid step h, regardless of the reentrant corner value.
In this paper we present a finite element analysis for a Dirichlet boundary control problem governed by the Stokes equation. The Dirichlet control is considered in a convex closed subset of the energy space $\mathbf{H}^1(\Omega).$ Most of the previous works on the Stokes Dirichlet boundary control problem deals with either tangential control or the case where the flux of the control is zero. This choice of the control is very particular and their choice of the formulation leads to the control with limited regularity. To overcome this difficulty, we introduce the Stokes problem with outflow condition and the control acts on the Dirichlet boundary only hence our control is more general and it has both the tangential and normal components. We prove well-posedness and discuss on the regularity of the control problem. The first-order optimality condition for the control leads to a Signorini problem. We develop a two-level finite element discretization by using $\mathbf{P}_1$ elements(on the fine mesh) for the velocity and the control variable and $P_0$ elements (on the coarse mesh) for the pressure variable. The standard energy error analysis gives $\frac{1}{2}+\frac{\delta}{2}$ order of convergence when the control is in $\mathbf{H}^{\frac{3}{2}+\delta}(\Omega)$ space. Here we have improved it to $\frac{1}{2}+\delta,$ which is optimal. Also, when the control lies in less regular space we derived optimal order of convergence up to the regularity. The theoretical results are corroborated by a variety of numerical tests.
In numerical simulations of complex flows with discontinuities, it is necessary to use nonlinear schemes. The spectrum of the scheme used have a significant impact on the resolution and stability of the computation. Based on the approximate dispersion relation method, we combine the corresponding spectral property with the dispersion relation preservation proposed by De and Eswaran (J. Comput. Phys. 218 (2006) 398-416) and propose a quasi-linear dispersion relation preservation (QL-DRP) analysis method, through which the group velocity of the nonlinear scheme can be determined. In particular, we derive the group velocity property when a high-order Runge-Kutta scheme is used and compare the performance of different time schemes with QL-DRP. The rationality of the QL-DRP method is verified by a numerical simulation and the discrete Fourier transform method. To further evaluate the performance of a nonlinear scheme in finding the group velocity, new hyperbolic equations are designed. The validity of QL-DRP and the group velocity preservation of several schemes are investigated using two examples of the equation for one-dimensional wave propagation and the new hyperbolic equations. The results show that the QL-DRP method integrated with high-order time schemes can determine the group velocity for nonlinear schemes and evaluate their performance reasonably and efficiently.