Control variates are post-processing tools for Monte Carlo estimators which can lead to significant variance reduction. This approach usually requires a large number of samples, which can be prohibitive for applications where sampling from a posterior or evaluating the integrand is computationally expensive. Furthermore, there are many scenarios where we need to compute multiple related integrals simultaneously or sequentially, which can further exacerbate computational costs. In this paper, we propose vector-valued control variates, an extension of control variates which can be used to reduce the variance of multiple integrals jointly. This allows the transfer of information across integration tasks, and hence reduces the overall requirement for a large number of samples. We focus on control variates based on kernel interpolants and our novel construction is obtained through a generalised Stein identity and the development of novel matrix-valued Stein reproducing kernels. We demonstrate our methodology on a range of problems including multifidelity modelling and model evidence computation through thermodynamic integration.
We develop a Multi-Agent Reinforcement Learning (MARL) method to learn scalable control policies for target tracking. Our method can handle an arbitrary number of pursuers and targets; we show results for tasks consisting up to 1000 pursuers tracking 1000 targets. We use a decentralized, partially-observable Markov Decision Process framework to model pursuers as agents receiving partial observations (range and bearing) about targets which move using fixed, unknown policies. An attention mechanism is used to parameterize the value function of the agents; this mechanism allows us to handle an arbitrary number of targets. Entropy-regularized off-policy RL methods are used to train a stochastic policy, and we discuss how it enables a hedging behavior between pursuers that leads to a weak form of cooperation in spite of completely decentralized control execution. We further develop a masking heuristic that allows training on smaller problems with few pursuers-targets and execution on much larger problems. Thorough simulation experiments, ablation studies, and comparisons to state of the art algorithms are performed to study the scalability of the approach and robustness of performance to varying numbers of agents and targets.
This paper studies a new variant of the stochastic multi-armed bandits problem where auxiliary information about the arm rewards is available in the form of control variates. In many applications like queuing and wireless networks, the arm rewards are functions of some exogenous variables. The mean values of these variables are known a priori from historical data and can be used as control variates. Leveraging the theory of control variates, we obtain mean estimates with smaller variance and tighter confidence bounds. We develop an improved upper confidence bound based algorithm named UCB-CV and characterize the regret bounds in terms of the correlation between rewards and control variates when they follow a multivariate normal distribution. We also extend UCB-CV to other distributions using resampling methods like Jackknifing and Splitting. Experiments on synthetic problem instances validate performance guarantees of the proposed algorithms.
Stochastic gradient-based optimisation for discrete latent variable models is challenging due to the high variance of gradients. We introduce a variance reduction technique for score function estimators that makes use of double control variates. These control variates act on top of a main control variate, and try to further reduce the variance of the overall estimator. We develop a double control variate for the REINFORCE leave-one-out estimator using Taylor expansions. For training discrete latent variable models, such as variational autoencoders with binary latent variables, our approach adds no extra computational cost compared to standard training with the REINFORCE leave-one-out estimator. We apply our method to challenging high-dimensional toy examples and training variational autoencoders with binary latent variables. We show that our estimator can have lower variance compared to other state-of-the-art estimators.
Active inference is a unifying theory for perception and action resting upon the idea that the brain maintains an internal model of the world by minimizing free energy. From a behavioral perspective, active inference agents can be seen as self-evidencing beings that act to fulfill their optimistic predictions, namely preferred outcomes or goals. In contrast, reinforcement learning requires human-designed rewards to accomplish any desired outcome. Although active inference could provide a more natural self-supervised objective for control, its applicability has been limited because of the shortcomings in scaling the approach to complex environments. In this work, we propose a contrastive objective for active inference that strongly reduces the computational burden in learning the agent's generative model and planning future actions. Our method performs notably better than likelihood-based active inference in image-based tasks, while also being computationally cheaper and easier to train. We compare to reinforcement learning agents that have access to human-designed reward functions, showing that our approach closely matches their performance. Finally, we also show that contrastive methods perform significantly better in the case of distractors in the environment and that our method is able to generalize goals to variations in the background.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
We present a framework for training GANs with explicit control over generated images. We are able to control the generated image by settings exact attributes such as age, pose, expression, etc. Most approaches for editing GAN-generated images achieve partial control by leveraging the latent space disentanglement properties, obtained implicitly after standard GAN training. Such methods are able to change the relative intensity of certain attributes, but not explicitly set their values. Recently proposed methods, designed for explicit control over human faces, harness morphable 3D face models to allow fine-grained control capabilities in GANs. Unlike these methods, our control is not constrained to morphable 3D face model parameters and is extendable beyond the domain of human faces. Using contrastive learning, we obtain GANs with an explicitly disentangled latent space. This disentanglement is utilized to train control-encoders mapping human-interpretable inputs to suitable latent vectors, thus allowing explicit control. In the domain of human faces we demonstrate control over identity, age, pose, expression, hair color and illumination. We also demonstrate control capabilities of our framework in the domains of painted portraits and dog image generation. We demonstrate that our approach achieves state-of-the-art performance both qualitatively and quantitatively.
Few-shot learning methods offer pre-training techniques optimized for easier later adaptation of the model to new classes (unseen during training) using one or a few examples. This adaptivity to unseen classes is especially important for many practical applications where the pre-trained label space cannot remain fixed for effective use and the model needs to be "specialized" to support new categories on the fly. One particularly interesting scenario, essentially overlooked by the few-shot literature, is Coarse-to-Fine Few-Shot (C2FS), where the training classes (e.g. animals) are of much `coarser granularity' than the target (test) classes (e.g. breeds). A very practical example of C2FS is when the target classes are sub-classes of the training classes. Intuitively, it is especially challenging as (both regular and few-shot) supervised pre-training tends to learn to ignore intra-class variability which is essential for separating sub-classes. In this paper, we introduce a novel 'Angular normalization' module that allows to effectively combine supervised and self-supervised contrastive pre-training to approach the proposed C2FS task, demonstrating significant gains in a broad study over multiple baselines and datasets. We hope that this work will help to pave the way for future research on this new, challenging, and very practical topic of C2FS classification.
Recently, many unsupervised deep learning methods have been proposed to learn clustering with unlabelled data. By introducing data augmentation, most of the latest methods look into deep clustering from the perspective that the original image and its tansformation should share similar semantic clustering assignment. However, the representation features before softmax activation function could be quite different even the assignment probability is very similar since softmax is only sensitive to the maximum value. This may result in high intra-class diversities in the representation feature space, which will lead to unstable local optimal and thus harm the clustering performance. By investigating the internal relationship between mutual information and contrastive learning, we summarized a general framework that can turn any maximizing mutual information into minimizing contrastive loss. We apply it to both the semantic clustering assignment and representation feature and propose a novel method named Deep Robust Clustering by Contrastive Learning (DRC). Different to existing methods, DRC aims to increase inter-class diver-sities and decrease intra-class diversities simultaneously and achieve more robust clustering results. Extensive experiments on six widely-adopted deep clustering benchmarks demonstrate the superiority of DRC in both stability and accuracy. e.g., attaining 71.6% mean accuracy on CIFAR-10, which is 7.1% higher than state-of-the-art results.
In order to avoid the curse of dimensionality, frequently encountered in Big Data analysis, there was a vast development in the field of linear and nonlinear dimension reduction techniques in recent years. These techniques (sometimes referred to as manifold learning) assume that the scattered input data is lying on a lower dimensional manifold, thus the high dimensionality problem can be overcome by learning the lower dimensionality behavior. However, in real life applications, data is often very noisy. In this work, we propose a method to approximate $\mathcal{M}$ a $d$-dimensional $C^{m+1}$ smooth submanifold of $\mathbb{R}^n$ ($d \ll n$) based upon noisy scattered data points (i.e., a data cloud). We assume that the data points are located "near" the lower dimensional manifold and suggest a non-linear moving least-squares projection on an approximating $d$-dimensional manifold. Under some mild assumptions, the resulting approximant is shown to be infinitely smooth and of high approximation order (i.e., $O(h^{m+1})$, where $h$ is the fill distance and $m$ is the degree of the local polynomial approximation). The method presented here assumes no analytic knowledge of the approximated manifold and the approximation algorithm is linear in the large dimension $n$. Furthermore, the approximating manifold can serve as a framework to perform operations directly on the high dimensional data in a computationally efficient manner. This way, the preparatory step of dimension reduction, which induces distortions to the data, can be avoided altogether.
Importance sampling is one of the most widely used variance reduction strategies in Monte Carlo rendering. In this paper, we propose a novel importance sampling technique that uses a neural network to learn how to sample from a desired density represented by a set of samples. Our approach considers an existing Monte Carlo rendering algorithm as a black box. During a scene-dependent training phase, we learn to generate samples with a desired density in the primary sample space of the rendering algorithm using maximum likelihood estimation. We leverage a recent neural network architecture that was designed to represent real-valued non-volume preserving ('Real NVP') transformations in high dimensional spaces. We use Real NVP to non-linearly warp primary sample space and obtain desired densities. In addition, Real NVP efficiently computes the determinant of the Jacobian of the warp, which is required to implement the change of integration variables implied by the warp. A main advantage of our approach is that it is agnostic of underlying light transport effects, and can be combined with many existing rendering techniques by treating them as a black box. We show that our approach leads to effective variance reduction in several practical scenarios.