As a baseball game progresses, batters appear to perform better the more times they face a particular pitcher. The apparent drop-off in pitcher performance from one time through the order to the next, known as the Time Through the Order Penalty (TTOP), is often attributed to within-game batter learning. Although the TTOP has largely been accepted within baseball and influences many managers' in-game decision making, we argue that existing approaches of estimating the size of the TTOP cannot disentangle continuous evolution in pitcher performance over the course of the game from discontinuities between successive times through the order. Using a Bayesian multinomial regression model, we find that, after adjusting for confounders like batter and pitcher quality, handedness, and home field advantage, there is little evidence of strong discontinuity in pitcher performance between times through the order. Our analysis suggests that the start of the third time through the order should not be viewed as a special cutoff point in deciding whether to pull a starting pitcher.
Time-to-event estimands are central to many oncology clinical trials. The estimand framework (addendum to the ICH E9 guideline) calls for precisely defining the treatment effect of interest to align with the clinical question of interest and requires predefining the handling of intercurrent events that occur after treatment initiation and either preclude the observation of an event of interest or impact the interpretation of the treatment effect. We discuss a practical problem in clinical trial design and execution, i.e. in some clinical contexts it is not feasible to systematically follow patients to an event of interest. Loss to follow-up in the presence of intercurrent events can affect the meaning and interpretation of the study results. We provide recommendations for trial design, stressing the need for close alignment of the clinical question of interest and study design, impact on data collection and other practical implications. When patients cannot be systematically followed, compromise may be necessary to select the best available estimand that can be feasibly estimated under the circumstances. We discuss the use of sensitivity and supplementary analyses to examine assumptions of interest.
The number of modes in a probability density function is representative of the model's complexity and can also be viewed as the number of existing subpopulations. Despite its relevance, little research has been devoted to its estimation. Focusing on the univariate setting, we propose a novel approach targeting prediction accuracy inspired by some overlooked aspects of the problem. We argue for the need for structure in the solutions, the subjective and uncertain nature of modes, and the convenience of a holistic view blending global and local density properties. Our method builds upon a combination of flexible kernel estimators and parsimonious compositional splines. Feature exploration, model selection and mode testing are implemented in the Bayesian inference paradigm, providing soft solutions and allowing to incorporate expert judgement in the process. The usefulness of our proposal is illustrated through a case study in sports analytics, showcasing multiple companion visualisation tools. A thorough simulation study demonstrates that traditional modality-driven approaches paradoxically struggle to provide accurate results. In this context, our method emerges as a top-tier alternative offering innovative solutions for analysts.
It has been observed that the performances of many high-dimensional estimation problems are universal with respect to underlying sensing (or design) matrices. Specifically, matrices with markedly different constructions seem to achieve identical performance if they share the same spectral distribution and have ``generic'' singular vectors. We prove this universality phenomenon for the case of convex regularized least squares (RLS) estimators under a linear regression model with additive Gaussian noise. Our main contributions are two-fold: (1) We introduce a notion of universality classes for sensing matrices, defined through a set of deterministic conditions that fix the spectrum of the sensing matrix and precisely capture the previously heuristic notion of generic singular vectors; (2) We show that for all sensing matrices that lie in the same universality class, the dynamics of the proximal gradient descent algorithm for solving the regression problem, as well as the performance of RLS estimators themselves (under additional strong convexity conditions) are asymptotically identical. In addition to including i.i.d. Gaussian and rotational invariant matrices as special cases, our universality class also contains highly structured, strongly correlated, or even (nearly) deterministic matrices. Examples of the latter include randomly signed versions of incoherent tight frames and randomly subsampled Hadamard transforms. As a consequence of this universality principle, the asymptotic performance of regularized linear regression on many structured matrices constructed with limited randomness can be characterized by using the rotationally invariant ensemble as an equivalent yet mathematically more tractable surrogate.
Recent advances in neuroscientific experimental techniques have enabled us to simultaneously record the activity of thousands of neurons across multiple brain regions. This has led to a growing need for computational tools capable of analyzing how task-relevant information is represented and communicated between several brain regions. Partial information decompositions (PIDs) have emerged as one such tool, quantifying how much unique, redundant and synergistic information two or more brain regions carry about a task-relevant message. However, computing PIDs is computationally challenging in practice, and statistical issues such as the bias and variance of estimates remain largely unexplored. In this paper, we propose a new method for efficiently computing and estimating a PID definition on multivariate Gaussian distributions. We show empirically that our method satisfies an intuitive additivity property, and recovers the ground truth in a battery of canonical examples, even at high dimensionality. We also propose and evaluate, for the first time, a method to correct the bias in PID estimates at finite sample sizes. Finally, we demonstrate that our Gaussian PID effectively characterizes inter-areal interactions in the mouse brain, revealing higher redundancy between visual areas when a stimulus is behaviorally relevant.
The rise of social media platforms has facilitated the formation of echo chambers, which are online spaces where users predominantly encounter viewpoints that reinforce their existing beliefs while excluding dissenting perspectives. This phenomenon significantly hinders information dissemination across communities and fuels societal polarization. Therefore, it is crucial to develop methods for quantifying echo chambers. In this paper, we present the Echo Chamber Score (ECS), a novel metric that assesses the cohesion and separation of user communities by measuring distances between users in the embedding space. In contrast to existing approaches, ECS is able to function without labels for user ideologies and makes no assumptions about the structure of the interaction graph. To facilitate measuring distances between users, we propose EchoGAE, a self-supervised graph autoencoder-based user embedding model that leverages users' posts and the interaction graph to embed them in a manner that reflects their ideological similarity. To assess the effectiveness of ECS, we use a Twitter dataset consisting of four topics - two polarizing and two non-polarizing. Our results showcase ECS's effectiveness as a tool for quantifying echo chambers and shedding light on the dynamics of online discourse.
This paper is focused on the approximation of the Euler equations of compressible fluid dynamics on a staggered mesh. With this aim, the flow parameters are described by the velocity, the density and the internal energy. The thermodynamic quantities are described on the elements of the mesh, and thus the approximation is only in $L^2$, while the kinematic quantities are globally continuous. The method is general in the sense that the thermodynamic and kinetic parameters are described by an arbitrary degree of polynomials. In practice, the difference between the degrees of the kinematic parameters and the thermodynamic ones {is set} to $1$. The integration in time is done using the forward Euler method but can be extended straightforwardly to higher-order methods. In order to guarantee that the limit solution will be a weak solution of the problem, we introduce a general correction method in the spirit of the Lagrangian staggered method described in \cite{Svetlana,MR4059382, MR3023731}, and we prove a Lax Wendroff theorem. The proof is valid for multidimensional versions of the scheme, even though most of the numerical illustrations in this work, on classical benchmark problems, are one-dimensional because we have easy access to the exact solution for comparison. We conclude by explaining that the method is general and can be used in different settings, for example, Finite Volume, or discontinuous Galerkin method, not just the specific one presented in this paper.
We study Bayesian histograms for distribution estimation on $[0,1]^d$ under the Wasserstein $W_v, 1 \leq v < \infty$ distance in the i.i.d sampling regime. We newly show that when $d < 2v$, histograms possess a special \textit{memory efficiency} property, whereby in reference to the sample size $n$, order $n^{d/2v}$ bins are needed to obtain minimax rate optimality. This result holds for the posterior mean histogram and with respect to posterior contraction: under the class of Borel probability measures and some classes of smooth densities. The attained memory footprint overcomes existing minimax optimal procedures by a polynomial factor in $n$; for example an $n^{1 - d/2v}$ factor reduction in the footprint when compared to the empirical measure, a minimax estimator in the Borel probability measure class. Additionally constructing both the posterior mean histogram and the posterior itself can be done super--linearly in $n$. Due to the popularity of the $W_1,W_2$ metrics and the coverage provided by the $d < 2v$ case, our results are of most practical interest in the $(d=1,v =1,2), (d=2,v=2), (d=3,v=2)$ settings and we provide simulations demonstrating the theory in several of these instances.
Moderate calibration, the expected event probability among observations with predicted probability $\pi$ being equal to $\pi$, is a desired property of risk prediction models. Current graphical and numerical techniques for evaluating moderate calibration of clinical prediction models are mostly based on smoothing or grouping the data. As well, there is no widely accepted inferential method for the null hypothesis that a model is moderately calibrated. In this work, we discuss recently-developed, and propose novel, methods for the assessment of moderate calibration for binary responses. The methods are based on the limiting distributions of functions of standardized partial sums of prediction errors converging to the corresponding laws of Brownian motion. The novel method relies on well-known properties of the Brownian bridge which enables joint inference on mean and moderate calibration, leading to a unified 'bridge' test for detecting miscalibration. Simulation studies indicate that the bridge test is more powerful, often substantially, than the alternative test. As a case study we consider a prediction model for short-term mortality after a heart attack. Moderate calibration can be assessed without requiring arbitrary grouping of data or using methods that require tuning of parameters. We suggest graphical presentation of the partial sum curves and reporting the strength of evidence indicated by the proposed methods when examining model calibration.
In this work, in a monodimensional setting, the high order accuracy and the well-balanced (WB) properties of some novel continuous interior penalty (CIP) stabilizations for the Shallow Water (SW) equations are investigated. The underlying arbitrary high order numerical framework is given by a Residual Distribution (RD)/continuous Galerkin (CG) finite element method (FEM) setting for the space discretization coupled with a Deferred Correction (DeC) time integration, to have a fully-explicit scheme. If, on the one hand, the introduced CIP stabilizations are all specifically designed to guarantee the exact preservation of the lake at rest steady state, on the other hand, some of them make use of general structures to tackle the preservation of general steady states, whose explicit analytical expression is not known. Several basis functions have been considered in the numerical experiments and, in all cases, the numerical results confirm the high order accuracy and the ability of the novel stabilizations to exactly preserve the lake at rest steady state and to capture small perturbations of such equilibrium. Moreover, some of them, based on the notions of space residual and global flux, have shown very good performances and superconvergences in the context of general steady solutions not known in closed-form. Despite the simulations addressing the monodimensional SW equations only, many elements can be extended to other general hyperbolic systems and to a multidimensional setting.
Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.