亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Moderate calibration, the expected event probability among observations with predicted probability $\pi$ being equal to $\pi$, is a desired property of risk prediction models. Current graphical and numerical techniques for evaluating moderate calibration of clinical prediction models are mostly based on smoothing or grouping the data. As well, there is no widely accepted inferential method for the null hypothesis that a model is moderately calibrated. In this work, we discuss recently-developed, and propose novel, methods for the assessment of moderate calibration for binary responses. The methods are based on the limiting distributions of functions of standardized partial sums of prediction errors converging to the corresponding laws of Brownian motion. The novel method relies on well-known properties of the Brownian bridge which enables joint inference on mean and moderate calibration, leading to a unified 'bridge' test for detecting miscalibration. Simulation studies indicate that the bridge test is more powerful, often substantially, than the alternative test. As a case study we consider a prediction model for short-term mortality after a heart attack. Moderate calibration can be assessed without requiring arbitrary grouping of data or using methods that require tuning of parameters. We suggest graphical presentation of the partial sum curves and reporting the strength of evidence indicated by the proposed methods when examining model calibration.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 相互獨立的 · UniFormer · 示例 · 算法與數據結構 ·
2023 年 9 月 11 日

Let the costs $C(i,j)$ for an instance of the asymmetric traveling salesperson problem be independent uniform $[0,1]$ random variables. We consider the efficiency of branch and bound algorithms that use the assignment relaxation as a lower bound. We show that w.h.p. the number of steps taken in any such branch and bound algorithm is $e^{\Omega(n^a)}$ for some small absolute constant $a>0$.

Given a target distribution $\pi$ and an arbitrary Markov infinitesimal generator $L$ on a finite state space $\mathcal{X}$, we develop three structured and inter-related approaches to generate new reversiblizations from $L$. The first approach hinges on a geometric perspective, in which we view reversiblizations as projections onto the space of $\pi$-reversible generators under suitable information divergences such as $f$-divergences. With different choices of functions $f$, we not only recover nearly all established reversiblizations but also unravel and generate new reversiblizations. Along the way, we unveil interesting geometric results such as bisection properties, Pythagorean identities, parallelogram laws and a Markov chain counterpart of the arithmetic-geometric-harmonic mean inequality governing these reversiblizations. This further serves as motivation for introducing the notion of information centroids of a sequence of Markov chains and to give conditions for their existence and uniqueness. Building upon the first approach, we view reversiblizations as generalized means. In this second approach, we construct new reversiblizations via different natural notions of generalized means such as the Cauchy mean or the dual mean. In the third approach, we combine the recently introduced locally-balanced Markov processes framework and the notion of convex $*$-conjugate in the study of $f$-divergence. The latter offers a rich source of balancing functions to generate new reversiblizations.

In this work, we show that solvers of elliptic boundary value problems in $d$ dimensions can be approximated to accuracy $\epsilon$ from only $\mathcal{O}\left(\log(N)\log^{d}(N / \epsilon)\right)$ matrix-vector products with carefully chosen vectors (right-hand sides). The solver is only accessed as a black box, and the underlying operator may be unknown and of an arbitrarily high order. Our algorithm (1) has complexity $\mathcal{O}\left(N\log^2(N)\log^{2d}(N / \epsilon)\right)$ and represents the solution operator as a sparse Cholesky factorization with $\mathcal{O}\left(N\log(N)\log^{d}(N / \epsilon)\right)$ nonzero entries, (2) allows for embarrassingly parallel evaluation of the solution operator and the computation of its log-determinant, (3) allows for $\mathcal{O}\left(\log(N)\log^{d}(N / \epsilon)\right)$ complexity computation of individual entries of the matrix representation of the solver that, in turn, enables its recompression to an $\mathcal{O}\left(N\log^{d}(N / \epsilon)\right)$ complexity representation. As a byproduct, our compression scheme produces a homogenized solution operator with near-optimal approximation accuracy. By polynomial approximation, we can also approximate the continuous Green's function (in operator and Hilbert-Schmidt norm) to accuracy $\epsilon$ from $\mathcal{O}\left(\log^{1 + d}\left(\epsilon^{-1}\right)\right)$ solutions of the PDE. We include rigorous proofs of these results. To the best of our knowledge, our algorithm achieves the best known trade-off between accuracy $\epsilon$ and the number of required matrix-vector products.

We consider the linear lambda-calculus extended with the sup type constructor, which provides an additive conjunction along with a non-deterministic destructor. The sup type constructor has been introduced in the context of quantum computing. In this paper, we study this type constructor within a simple linear logic categorical model, employing the category of semimodules over a commutative semiring. We demonstrate that the non-deterministic destructor finds a suitable model in a "weighted" codiagonal map. This approach offers a valid and insightful alternative to interpreting non-determinism, especially in instances where the conventional Powerset Monad interpretation does not align with the category's structure, as is the case with the category of semimodules. The validity of this alternative relies on the presence of biproducts within the category.

We introduce and study a scale of operator classes on the annulus that is motivated by the $\mathcal{C}_{\rho}$ classes of $\rho$-contractions of Nagy and Foia\c{s}. In particular, our classes are defined in terms of the contractivity of the double-layer potential integral operator over the annulus. We prove that if, in addition, complete contractivity is assumed, then one obtains a complete characterization involving certain variants of the $\mathcal{C}_{\rho}$ classes. Recent work of Crouzeix-Greenbaum and Schwenninger-de Vries allows us to also obtain relevant K-spectral estimates, generalizing existing results from the literature on the annulus. Finally, we exhibit a special case where these estimates can be significantly strengthened.

In order to perform isogeometric analysis with increased smoothness on complex domains, trimming, variational coupling or unstructured spline methods can be used. The latter two classes of methods require a multi-patch segmentation of the domain, and provide continuous bases along patch interfaces. In the context of shell modeling, variational methods are widely used, whereas the application of unstructured spline methods on shell problems is rather scarce. In this paper, we therefore provide a qualitative and a quantitative comparison of a selection of unstructured spline constructions, in particular the D-Patch, Almost-$C^1$, Analysis-Suitable $G^1$ and the Approximate $C^1$ constructions. Using this comparison, we aim to provide insight into the selection of methods for practical problems, as well as directions for future research. In the qualitative comparison, the properties of each method are evaluated and compared. In the quantitative comparison, a selection of numerical examples is used to highlight different advantages and disadvantages of each method. In the latter, comparison with weak coupling methods such as Nitsche's method or penalty methods is made as well. In brief, it is concluded that the Approximate $C^1$ and Analysis-Suitable $G^1$ converge optimally in the analysis of a bi-harmonic problem, without the need of special refinement procedures. Furthermore, these methods provide accurate stress fields. On the other hand, the Almost-$C^1$ and D-Patch provide relatively easy construction on complex geometries. The Almost-$C^1$ method does not have limitations on the valence of boundary vertices, unlike the D-Patch, but is only applicable to biquadratic local bases. Following from these conclusions, future research directions are proposed, for example towards making the Approximate $C^1$ and Analysis-Suitable $G^1$ applicable to more complex geometries.

Besov priors are nonparametric priors that can model spatially inhomogeneous functions. They are routinely used in inverse problems and imaging, where they exhibit attractive sparsity-promoting and edge-preserving features. A recent line of work has initiated the study of their asymptotic frequentist convergence properties. In the present paper, we consider the theoretical recovery performance of the posterior distributions associated to Besov-Laplace priors in the density estimation model, under the assumption that the observations are generated by a possibly spatially inhomogeneous true density belonging to a Besov space. We improve on existing results and show that carefully tuned Besov-Laplace priors attain optimal posterior contraction rates. Furthermore, we show that hierarchical procedures involving a hyper-prior on the regularity parameter lead to adaptation to any smoothness level.

A new numerical continuum \textit{one-domain} approach (ODA) solver is presented for the simulation of the transfer processes between a free fluid and a porous medium. The solver is developed in the \textit{mesoscopic} scale framework, where a continuous variation of the physical parameters of the porous medium (e.g., porosity and permeability) is assumed. The Navier-Stokes-Brinkman equations are solved along with the continuity equation, under the hypothesis of incompressible fluid. The porous medium is assumed to be fully saturated and can potentially be anisotropic. The domain is discretized with unstructured meshes allowing local refinements. A fractional time step procedure is applied, where one predictor and two corrector steps are solved within each time iteration. The predictor step is solved in the framework of a marching in space and time procedure, with some important numerical advantages. The two corrector steps require the solution of large linear systems, whose matrices are sparse, symmetric and positive definite, with $\mathcal{M}$-matrix property over Delaunay-meshes. A fast and efficient solution is obtained using a preconditioned conjugate gradient method. The discretization adopted for the two corrector steps can be regarded as a Two-Point-Flux-Approximation (TPFA) scheme, which, unlike the standard TPFA schemes, does not require the grid mesh to be $\mathbf{K}$-orthogonal, (with $\mathbf{K}$ the anisotropy tensor). As demonstrated with the provided test cases, the proposed scheme correctly retains the anisotropy effects within the porous medium. Furthermore, it overcomes the restrictions of existing mesoscopic scale one-domain approachs proposed in the literature.

Interpolators are unstable. For example, the mininum $\ell_2$ norm least square interpolator exhibits unbounded test errors when dealing with noisy data. In this paper, we study how ensemble stabilizes and thus improves the generalization performance, measured by the out-of-sample prediction risk, of an individual interpolator. We focus on bagged linear interpolators, as bagging is a popular randomization-based ensemble method that can be implemented in parallel. We introduce the multiplier-bootstrap-based bagged least square estimator, which can then be formulated as an average of the sketched least square estimators. The proposed multiplier bootstrap encompasses the classical bootstrap with replacement as a special case, along with a more intriguing variant which we call the Bernoulli bootstrap. Focusing on the proportional regime where the sample size scales proportionally with the feature dimensionality, we investigate the out-of-sample prediction risks of the sketched and bagged least square estimators in both underparametrized and overparameterized regimes. Our results reveal the statistical roles of sketching and bagging. In particular, sketching modifies the aspect ratio and shifts the interpolation threshold of the minimum $\ell_2$ norm estimator. However, the risk of the sketched estimator continues to be unbounded around the interpolation threshold due to excessive variance. In stark contrast, bagging effectively mitigates this variance, leading to a bounded limiting out-of-sample prediction risk. To further understand this stability improvement property, we establish that bagging acts as a form of implicit regularization, substantiated by the equivalence of the bagged estimator with its explicitly regularized counterpart. We also discuss several extensions.

We prove that if $X,Y$ are positive, independent, non-Dirac random variables and if for $\alpha,\beta\ge 0$, $\alpha\neq \beta$, $$ \psi_{\alpha,\beta}(x,y)=\left(y\,\tfrac{1+\beta(x+y)}{1+\alpha x+\beta y},\;x\,\tfrac{1+\alpha(x+y)}{1+\alpha x+\beta y}\right), $$ then the random variables $U$ and $V$ defined by $(U,V)=\psi_{\alpha,\beta}(X,Y)$ are independent if and only if $X$ and $Y$ follow Kummer distributions with suitably related parameters. In other words, any invariant measure for a lattice recursion model governed by $\psi_{\alpha,\beta}$ in the scheme introduced by Croydon and Sasada in \cite{CS2020}, is necessarily a product measure with Kummer marginals. The result extends earlier characterizations of Kummer and gamma laws by independence of $$ U=\tfrac{Y}{1+X}\quad\mbox{and}\quad V= X\left(1+\tfrac{Y}{1+X}\right), $$ which corresponds to the case of $\psi_{1,0}$. We also show that this independence property of Kummer laws covers, as limiting cases, several independence models known in the literature: the Lukacs, the Kummer-Gamma, the Matsumoto-Yor and the discrete Korteweg de Vries ones.

北京阿比特科技有限公司