We analyze when an arbitrary matrix pencil is equivalent to a dissipative Hamiltonian pencil and show that this heavily restricts the spectral properties. In order to relax the spectral properties, we introduce matrix pencils with coefficients that have positive semidefinite Hermitian parts. We will make a detailed analysis of their spectral properties and their numerical range. In particular, we relate the Kronecker structure of these pencils to that of an underlying skew-Hermitian pencil and discuss their regularity, index, numerical range, and location of eigenvalues. Further, we study matrix polynomials with positive semidefinite Hermitian coefficients and use linearizations with positive semidefinite Hermitian parts to derive sufficient conditions for a spectrum in the left half plane and derive bounds on the index.
A mapping $\alpha : V(G) \to V(H)$ from the vertex set of one graph $G$ to another graph $H$ is an isometric embedding if the shortest path distance between any two vertices in $G$ equals the distance between their images in $H$. Here, we consider isometric embeddings of a weighted graph $G$ into unweighted Hamming graphs, called Hamming embeddings, when $G$ satisfies the property that every edge is a shortest path between its endpoints. Using a Cartesian product decomposition of $G$ called its pseudofactorization, we show that every Hamming embedding of $G$ may be partitioned into Hamming embeddings for each irreducible pseudofactor graph of $G$, which we call its canonical partition. This implies that $G$ permits a Hamming embedding if and only if each of its irreducible pseudofactors is Hamming embeddable. This result extends prior work on unweighted graphs that showed that an unweighted graph permits a Hamming embedding if and only if each irreducible pseudofactor is a complete graph. When a graph $G$ has nontrivial pseudofactors, determining whether $G$ has a Hamming embedding can be simplified to checking embeddability of two or more smaller graphs.
This paper studies the algorithms for the minimisation of weighted automata. It starts with the definition of morphisms-which generalises and unifies the notion of bisimulation to the whole class of weighted automata-and the unicity of a minimal quotient for every automaton, obtained by partition refinement. From a general scheme for the refinement of partitions, two strategies are considered for the computation of the minimal quotient: the Domain Split and the Predecesor Class Split algorithms. They correspond respectivly to the classical Moore and Hopcroft algorithms for the computation of the minimal quotient of deterministic Boolean automata. We show that these two strategies yield algorithms with the same quadratic complexity and we study the cases when the second one can be improved in order to achieve a complexity similar to the one of Hopcroft algorithm.
Neuroscience has shown great progress in recent years. Several of the theoretical bases have arisen from the examination of dynamic systems, using Neural Mass Models (NMMs). Due to the largescale brain dynamics of NMMs and the difficulty of studying nonlinear systems, the local linearization approach to discretize the state equation was used via an algebraic formulation, as it intervenes favorably in the speed and efficiency of numerical integration. To study the spacetime organization of the brain and generate more complex dynamics, three structural levels (cortical unit, population and system) were defined and assumed, in which the new assumed representation for conduction delays and new ways of connecting were defined. This is a new time-delay NMM, which can simulate several types of EEG activities since kinetics information was considered at three levels of complexity. Results obtained in this analysis provide additional theoretical foundations and indicate specific characteristics for understanding neurodynamic.
In 2005, Goddard, Hedetniemi, Hedetniemi and Laskar [Generalized subgraph-restricted matchings in graphs, Discrete Mathematics, 293 (2005) 129 - 138] asked the computational complexity of determining the maximum cardinality of a matching whose vertex set induces a disconnected graph. In this paper we answer this question. In fact, we consider the generalized problem of finding $c$-disconnected matchings; such matchings are ones whose vertex sets induce subgraphs with at least $c$ connected components. We show that, for every fixed $c \geq 2$, this problem is NP-complete even if we restrict the input to bounded diameter bipartite graphs, while can be solved in polynomial time if $c = 1$. For the case when $c$ is part of the input, we show that the problem is NP-complete for chordal graphs, while being solvable in polynomial time for interval graphs. Finally, we explore the parameterized complexity of the problem. We present an FPT algorithm under the treewidth parameterization, and an XP algorithm for graphs with a polynomial number of minimal separators when parameterized by $c$. We complement these results by showing that, unless NP $\subseteq$ coNP/poly, the related Induced Matching problem does not admit a polynomial kernel when parameterized by vertex cover and size of the matching nor when parameterized by vertex deletion distance to clique and size of the matching. As for Connected Matching, we show how to obtain a maximum connected matching in linear time given an arbitrary maximum matching in the input.
We design a new algorithm for solving parametric systems having finitely many complex solutions for generic values of the parameters. More precisely, let $f = (f_1, \ldots, f_m)\subset \mathbb{Q}[y][x]$ with $y = (y_1, \ldots, y_t)$ and $x = (x_1, \ldots, x_n)$, $V\subset \mathbb{C}^{t+n}$ be the algebraic set defined by $f$ and $\pi$ be the projection $(y, x) \to y$. Under the assumptions that $f$ admits finitely many complex roots for generic values of $y$ and that the ideal generated by $f$ is radical, we solve the following problem. On input $f$, we compute semi-algebraic formulas defining semi-algebraic subsets $S_1, \ldots, S_l$ of the $y$-space such that $\cup_{i=1}^l S_i$ is dense in $\mathbb{R}^t$ and the number of real points in $V\cap \pi^{-1}(\eta)$ is invariant when $\eta$ varies over each $S_i$. This algorithm exploits properties of some well chosen monomial bases in the algebra $\mathbb{Q}(y)[x]/I$ where $I$ is the ideal generated by $f$ in $\mathbb{Q}(y)[x]$ and the specialization property of the so-called Hermite matrices. This allows us to obtain compact representations of the sets $S_i$ by means of semi-algebraic formulas encoding the signature of a symmetric matrix. When $f$ satisfies extra genericity assumptions, we derive complexity bounds on the number of arithmetic operations in $\mathbb{Q}$ and the degree of the output polynomials. Let $d$ be the maximal degree of the $f_i$'s and $D = n(d-1)d^n$, we prove that, on a generic $f=(f_1,\ldots,f_n)$, one can compute those semi-algebraic formulas with $O^~( \binom{t+D}{t}2^{3t}n^{2t+1} d^{3nt+2(n+t)+1})$ operations in $\mathbb{Q}$ and that the polynomials involved have degree bounded by $D$. We report on practical experiments which illustrate the efficiency of our algorithm on generic systems and systems from applications. It allows us to solve problems which are out of reach of the state-of-the-art.
Multifidelity methods are widely used for estimation of quantities of interest (QoIs) in uncertainty quantification using simulation codes of differing costs and accuracies. Many methods approximate numerical-valued statistics that represent only limited information of the QoIs. In this paper, we generalize the ideas in \cite{xu2021bandit} to develop a multifidelity method that approximates the distribution of scalar-valued QoI. Under a linear model hypothesis, we propose an exploration-exploitation strategy to reconstruct the full distribution, not just statistics, of a scalar-valued QoI using samples from a subset of low-fidelity regressors. We derive an informative asymptotic bound for the mean 1-Wasserstein distance between the estimator and the true distribution, and use it to adaptively allocate computational budget for parametric estimation and non-parametric approximation of the probability distribution. Assuming the linear model is correct, we prove that such a procedure is consistent and converges to the optimal policy (and hence optimal computational budget allocation) under an upper bound criterion as the budget goes to infinity. As a corollary, we obtain convergence of the approximated distribution in the mean 1-Wasserstein metric. The major advantages of our approach are that convergence to the full distribution of the output is attained under appropriate assumptions, and that the procedure and implementation require neither a hierarchical model setup, knowledge of cross-model information or correlation, nor \textit{a priori} known model statistics. Numerical experiments are provided in the end to support our theoretical analysis.
This paper studies the online correlated selection (OCS) problem. It was introduced by Fahrbach, Huang, Tao, and Zadimoghaddam (2020) to obtain the first edge-weighted online bipartite matching algorithm that breaks the $0.5$ barrier. Suppose that we receive a pair of elements in each round and immediately select one of them. Can we select with negative correlation to be more effective than independent random selections? Our contributions are threefold. For semi-OCS, which considers the probability that an element remains unselected after appearing in $k$ rounds, we give an optimal algorithm that minimizes this probability for all $k$. It leads to $0.536$-competitive unweighted and vertex-weighted online bipartite matching algorithms that randomize over only two options in each round, improving the $0.508$-competitive ratio by Fahrbach et al. (2020). Further, we develop the first multi-way semi-OCS that allows an arbitrary number of elements with arbitrary masses in each round. As an application, it rounds the Balance algorithm in unweighted and vertex-weighted online bipartite matching and is $0.593$-competitive. Finally, we study OCS, which further considers the probability that an element is unselected in an arbitrary subset of rounds. We prove that the optimal "level of negative correlation" is between $0.167$ and $0.25$, improving the previous bounds of $0.109$ and $1$ by Fahrbach et al. (2020). Our OCS gives a $0.519$-competitive edge-weighted online bipartite matching algorithm, improving the previous $0.508$-competitive ratio by Fahrbach et al. (2020).
In this paper we consider the spatial semi-discretization of conservative PDEs. Such finite dimensional approximations of infinite dimensional dynamical systems can be described as flows in suitable matrix spaces, which in turn leads to the need to solve polynomial matrix equations, a classical and important topic both in theoretical and in applied mathematics. Solving numerically these equations is challenging due to the presence of several conservation laws which our finite models incorporate and which must be retained while integrating the equations of motion. In the last thirty years, the theory of geometric integration has provided a variety of techniques to tackle this problem. These numerical methods require to solve both direct and inverse problems in matrix spaces. We present two algorithms to solve a cubic matrix equation arising in the geometric integration of isospectral flows. This type of ODEs includes finite models of ideal hydrodynamics, plasma dynamics, and spin particles, which we use as test problems for our algorithms.
We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.
This paper is an attempt to explain all the matrix calculus you need in order to understand the training of deep neural networks. We assume no math knowledge beyond what you learned in calculus 1, and provide links to help you refresh the necessary math where needed. Note that you do not need to understand this material before you start learning to train and use deep learning in practice; rather, this material is for those who are already familiar with the basics of neural networks, and wish to deepen their understanding of the underlying math. Don't worry if you get stuck at some point along the way---just go back and reread the previous section, and try writing down and working through some examples. And if you're still stuck, we're happy to answer your questions in the Theory category at forums.fast.ai. Note: There is a reference section at the end of the paper summarizing all the key matrix calculus rules and terminology discussed here. See related articles at //explained.ai