Extended Dynamic Mode Decomposition (EDMD) is a popular data-driven method to approximate the action of the Koopman operator on a linear function space spanned by a dictionary of functions. The accuracy of EDMD model critically depends on the quality of the particular dictionary's span, specifically on how close it is to being invariant under the Koopman operator. Motivated by the observation that the residual error of EDMD, typically used for dictionary learning, does not encode the quality of the function space and is sensitive to the choice of basis, we introduce the novel concept of consistency index. We show that this measure, based on using EDMD forward and backward in time, enjoys a number of desirable qualities that make it suitable for data-driven modeling of dynamical systems: it measures the quality of the function space, it is invariant under the choice of basis, can be computed in closed form from the data, and provides a tight upper-bound for the relative root mean square error of all function predictions on the entire span of the dictionary.
With the attention mechanism, transformers achieve significant empirical successes. Despite the intuitive understanding that transformers perform relational inference over long sequences to produce desirable representations, we lack a rigorous theory on how the attention mechanism achieves it. In particular, several intriguing questions remain open: (a) What makes a desirable representation? (b) How does the attention mechanism infer the desirable representation within the forward pass? (c) How does a pretraining procedure learn to infer the desirable representation through the backward pass? We observe that, as is the case in BERT and ViT, input tokens are often exchangeable since they already include positional encodings. The notion of exchangeability induces a latent variable model that is invariant to input sizes, which enables our theoretical analysis. - To answer (a) on representation, we establish the existence of a sufficient and minimal representation of input tokens. In particular, such a representation instantiates the posterior distribution of the latent variable given input tokens, which plays a central role in predicting output labels and solving downstream tasks. - To answer (b) on inference, we prove that attention with the desired parameter infers the latent posterior up to an approximation error, which is decreasing in input sizes. In detail, we quantify how attention approximates the conditional mean of the value given the key, which characterizes how it performs relational inference over long sequences. - To answer (c) on learning, we prove that both supervised and self-supervised objectives allow empirical risk minimization to learn the desired parameter up to a generalization error, which is independent of input sizes. Particularly, in the self-supervised setting, we identify a condition number that is pivotal to solving downstream tasks.
The deployment of inference services at the network edge, called edge inference, offloads computation-intensive inference tasks from mobile devices to edge servers, thereby enhancing the former's capabilities and battery lives. In a multiuser system, the joint allocation of communication-and-computation ($\text{C}^\text{2}$) resources (i.e., scheduling and bandwidth allocation) is made challenging by adopting efficient inference techniques, batching and early exiting, and further complicated by the heterogeneity in users' requirements on accuracy and latency. Batching groups multiple tasks into one batch for parallel processing to reduce time-consuming memory access and thereby boosts the throughput (i.e., completed task per second). On the other hand, early exiting allows a task to exit from a deep-neural network without traversing the whole network to support a tradeoff between accuracy and latency. In this work, we study optimal $\text{C}^\text{2}$ resource allocation with batching and early exiting, which is an NP-complete integer programming problem. A set of efficient algorithms are designed under the criterion of maximum throughput by tackling the challenge. Experimental results demonstrate that both optimal and sub-optimal $\text{C}^\text{2}$ resource allocation algorithms can leverage integrated batching and early exiting to double the inference throughput compared with conventional schemes.
In models of opinion dynamics, many parameters -- either in the form of constants or in the form of functions -- play a critical role in describing, calibrating, and forecasting how opinions change with time. When examining a model of opinion dynamics, it is beneficial to infer its parameters using empirical data. In this paper, we study an example of such an inference problem. We consider a mean-field bounded-confidence model with an unknown interaction kernel between individuals. This interaction kernel encodes how individuals with different opinions interact and affect each other's opinions. It is often difficult to quantitatively measure social opinions as empirical data from observations or experiments, so we assume that the available data takes the form of partial observations of the cumulative distribution function of opinions. We prove that certain measurements guarantee a precise and unique inference of the interaction kernel and propose a numerical method to reconstruct an interaction kernel from a limited number of data points. Our numerical results suggest that the error of the inferred interaction kernel decays exponentially as we strategically enlarge the data set.
Sequential testing, always-valid $p$-values, and confidence sequences promise flexible statistical inference and on-the-fly decision making. However, unlike fixed-$n$ inference based on asymptotic normality, existing sequential tests either make parametric assumptions and end up under-covering/over-rejecting when these fail or use non-parametric but conservative concentration inequalities and end up over-covering/under-rejecting. To circumvent these issues, we sidestep exact at-least-$\alpha$ coverage and focus on asymptotically exact coverage and asymptotic optimality. That is, we seek sequential tests whose probability of ever rejecting a true hypothesis asymptotically approaches $\alpha$ and whose expected time to reject a false hypothesis approaches a lower bound on all tests with asymptotic coverage at least $\alpha$, both under an appropriate asymptotic regime. We permit observations to be both non-parametric and dependent and focus on testing whether the observations form a martingale difference sequence. We propose the universal sequential probability ratio test (uSPRT), a slight modification to the normal-mixture sequential probability ratio test, where we add a burn-in period and adjust thresholds accordingly. We show that even in this very general setting, the uSPRT is asymptotically optimal under mild generic conditions. We apply the results to stabilized estimating equations to test means, treatment effects, etc. Our results also provide corresponding guarantees for the implied confidence sequences. Numerical simulations verify our guarantees and the benefits of the uSPRT over alternatives.
For multilayer structures, interfacial failure is one of the most important elements related to device reliability. For cohesive zone modelling, traction-separation relations represent the adhesive interactions across interfaces. However, existing theoretical models do not currently capture traction-separation relations that have been extracted using direct methods, particularly under mixed-mode conditions. Given the complexity of the problem, models derived from the neural network approach are attractive. Although they can be trained to fit data along the loading paths taken in a particular set of mixed-mode fracture experiments, they may fail to obey physical laws for paths not covered by the training data sets. In this paper, a thermodynamically consistent neural network (TCNN) approach is established to model the constitutive behavior of interfaces when faced with sparse training data sets. Accordingly, three conditions are examined and implemented here: (i) thermodynamic consistency, (ii) maximum energy dissipation path control and (iii) J-integral conservation. These conditions are treated as constraints and are implemented as such in the loss function. The feasibility of this approach is demonstrated by comparing the modeling results with a range of physical constraints. Moreover, a Bayesian optimization algorithm is then adopted to optimize the weight factors associated with each of the constraints in order to overcome convergence issues that can arise when multiple constraints are present. The resultant numerical implementation of the ideas presented here produced well-behaved, mixed-mode traction separation surfaces that maintained the fidelity of the experimental data that was provided as input. The proposed approach heralds a new autonomous, point-to-point constitutive modeling concept for interface mechanics.
We study uniform consistency in nonparametric mixture models as well as closely related mixture of regression (also known as mixed regression) models, where the regression functions are allowed to be nonparametric and the error distributions are assumed to be convolutions of a Gaussian density. We construct uniformly consistent estimators under general conditions while simultaneously highlighting several pain points in extending existing pointwise consistency results to uniform results. The resulting analysis turns out to be nontrivial, and several novel technical tools are developed along the way. In the case of mixed regression, we prove $L^1$ convergence of the regression functions while allowing for the component regression functions to intersect arbitrarily often, which presents additional technical challenges. We also consider generalizations to general (i.e. non-convolutional) nonparametric mixtures.
Anomaly detection on time series data is increasingly common across various industrial domains that monitor metrics in order to prevent potential accidents and economic losses. However, a scarcity of labeled data and ambiguous definitions of anomalies can complicate these efforts. Recent unsupervised machine learning methods have made remarkable progress in tackling this problem using either single-timestamp predictions or time series reconstructions. While traditionally considered separately, these methods are not mutually exclusive and can offer complementary perspectives on anomaly detection. This paper first highlights the successes and limitations of prediction-based and reconstruction-based methods with visualized time series signals and anomaly scores. We then propose AER (Auto-encoder with Regression), a joint model that combines a vanilla auto-encoder and an LSTM regressor to incorporate the successes and address the limitations of each method. Our model can produce bi-directional predictions while simultaneously reconstructing the original time series by optimizing a joint objective function. Furthermore, we propose several ways of combining the prediction and reconstruction errors through a series of ablation studies. Finally, we compare the performance of the AER architecture against two prediction-based methods and three reconstruction-based methods on 12 well-known univariate time series datasets from NASA, Yahoo, Numenta, and UCR. The results show that AER has the highest averaged F1 score across all datasets (a 23.5% improvement compared to ARIMA) while retaining a runtime similar to its vanilla auto-encoder and regressor components. Our model is available in Orion, an open-source benchmarking tool for time series anomaly detection.
The problem of testing the equality of mean vectors for high-dimensional data has been intensively investigated in the literature. However, most of the existing tests impose strong assumptions on the underlying group covariance matrices which may not be satisfied or hardly be checked in practice. In this article, an F-type test for two-sample Behrens--Fisher problems for high-dimensional data is proposed and studied. When the two samples are normally distributed and when the null hypothesis is valid, the proposed F-type test statistic is shown to be an F-type mixture, a ratio of two independent chi-square-type mixtures. Under some regularity conditions and the null hypothesis, it is shown that the proposed F-type test statistic and the above F-type mixture have the same normal and non-normal limits. It is then justified to approximate the null distribution of the proposed F-type test statistic by that of the F-type mixture, resulting in the so-called normal reference F-type test. Since the F-type mixture is a ratio of two independent chi-square-type mixtures, we employ the Welch--Satterthwaite chi-square-approximation to the distributions of the numerator and the denominator of the F-type mixture respectively, resulting in an approximation F-distribution whose degrees of freedom can be consistently estimated from the data. The asymptotic power of the proposed F-type test is established. Two simulation studies are conducted and they show that in terms of size control, the proposed F-type test outperforms two existing competitors. The proposed F-type test is also illustrated by a real data example.
Neural networks have shown tremendous growth in recent years to solve numerous problems. Various types of neural networks have been introduced to deal with different types of problems. However, the main goal of any neural network is to transform the non-linearly separable input data into more linearly separable abstract features using a hierarchy of layers. These layers are combinations of linear and nonlinear functions. The most popular and common non-linearity layers are activation functions (AFs), such as Logistic Sigmoid, Tanh, ReLU, ELU, Swish and Mish. In this paper, a comprehensive overview and survey is presented for AFs in neural networks for deep learning. Different classes of AFs such as Logistic Sigmoid and Tanh based, ReLU based, ELU based, and Learning based are covered. Several characteristics of AFs such as output range, monotonicity, and smoothness are also pointed out. A performance comparison is also performed among 18 state-of-the-art AFs with different networks on different types of data. The insights of AFs are presented to benefit the researchers for doing further research and practitioners to select among different choices. The code used for experimental comparison is released at: \url{//github.com/shivram1987/ActivationFunctions}.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.