亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Stream processing is usually done either on a tuple-by-tuple basis or in micro-batches. There are many applications where tuples over a predefined duration/window must be processed within certain deadlines. Processing such queries using stream processing engines can be very inefficient since there is often a significant overhead per tuple or micro-batch. The cost of computation can be significantly reduced by using the wider window available for computation. In this work, we present scheduling schemes where the overhead cost is minimized while meeting the query deadline constraints. For such queries, since the result is needed only at the deadline, tuples can be processed in larger batches, instead of using micro-batches. We present scheduling schemes for single and multi query scenarios. The proposed scheduling algorithms have been implemented as a Custom Query Scheduler, on top of Apache Spark. Our performance study with TPC-H data, under single and multi query modes, shows orders of magnitude improvement as compared to naively using Spark streaming.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

Contextual bandit learning is increasingly favored in modern large-scale recommendation systems. To better utlize the contextual information and available user or item features, the integration of neural networks have been introduced to enhance contextual bandit learning and has triggered significant interest from both academia and industry. However, a major challenge arises when implementing a disjoint neural contextual bandit solution in large-scale recommendation systems, where each item or user may correspond to a separate bandit arm. The huge number of items to recommend poses a significant hurdle for real world production deployment. This paper focuses on a joint neural contextual bandit solution which serves all recommending items in one single model. The output consists of a predicted reward $\mu$, an uncertainty $\sigma$ and a hyper-parameter $\alpha$ which balances exploitation and exploration, e.g., $\mu + \alpha \sigma$. The tuning of the parameter $\alpha$ is typically heuristic and complex in practice due to its stochastic nature. To address this challenge, we provide both theoretical analysis and experimental findings regarding the uncertainty $\sigma$ of the joint neural contextual bandit model. Our analysis reveals that $\alpha$ demonstrates an approximate square root relationship with the size of the last hidden layer $F$ and inverse square root relationship with the amount of training data $N$, i.e., $\sigma \propto \sqrt{\frac{F}{N}}$. The experiments, conducted with real industrial data, align with the theoretical analysis, help understanding model behaviors and assist the hyper-parameter tuning during both offline training and online deployment.

Tame functions are a class of nonsmooth, nonconvex functions, which feature in a wide range of applications: functions encountered in the training of deep neural networks with all common activations, value functions of mixed-integer programs, or wave functions of small molecules. We consider approximating tame functions with piecewise polynomial functions. We bound the quality of approximation of a tame function by a piecewise polynomial function with a given number of segments on any full-dimensional cube. We also present the first mixed-integer programming formulation of piecewise polynomial regression. Together, these can be used to estimate tame functions. We demonstrate promising computational results.

Fractional derivatives are a well-studied generalization of integer order derivatives. Naturally, for optimization, it is of interest to understand the convergence properties of gradient descent using fractional derivatives. Convergence analysis of fractional gradient descent is currently limited both in the methods analyzed and the settings analyzed. This paper aims to fill in these gaps by analyzing variations of fractional gradient descent in smooth and convex, smooth and strongly convex, and smooth and non-convex settings. First, novel bounds will be established bridging fractional and integer derivatives. Then, these bounds will be applied to the aforementioned settings to prove linear convergence for smooth and strongly convex functions and $O(1/T)$ convergence for smooth and convex functions. Additionally, we prove $O(1/T)$ convergence for smooth and non-convex functions using an extended notion of smoothness - H\"older smoothness - that is more natural for fractional derivatives. Finally, empirical results will be presented on the potential speed up of fractional gradient descent over standard gradient descent as well as some preliminary theoretical results explaining this speed up.

Generative Retrieval (GR) is an emerging paradigm in information retrieval that leverages generative models to directly map queries to relevant document identifiers (DocIDs) without the need for traditional query processing or document reranking. This survey provides a comprehensive overview of GR, highlighting key developments, indexing and retrieval strategies, and challenges. We discuss various document identifier strategies, including numerical and string-based identifiers, and explore different document representation methods. Our primary contribution lies in outlining future research directions that could profoundly impact the field: improving the quality of query generation, exploring learnable document identifiers, enhancing scalability, and integrating GR with multi-task learning frameworks. By examining state-of-the-art GR techniques and their applications, this survey aims to provide a foundational understanding of GR and inspire further innovations in this transformative approach to information retrieval. We also make the complementary materials such as paper collection publicly available at //github.com/MiuLab/GenIR-Survey/

Copyright infringement may occur when a generative model produces samples substantially similar to some copyrighted data that it had access to during the training phase. The notion of access usually refers to including copyrighted samples directly in the training dataset, which one may inspect to identify an infringement. We argue that such visual auditing largely overlooks a concealed copyright infringement, where one constructs a disguise that looks drastically different from the copyrighted sample yet still induces the effect of training Latent Diffusion Models on it. Such disguises only require indirect access to the copyrighted material and cannot be visually distinguished, thus easily circumventing the current auditing tools. In this paper, we provide a better understanding of such disguised copyright infringement by uncovering the disguises generation algorithm, the revelation of the disguises, and importantly, how to detect them to augment the existing toolbox. Additionally, we introduce a broader notion of acknowledgment for comprehending such indirect access. Our code is available at //github.com/watml/disguised_copyright_infringement.

With the technological advances in machine learning, effective ways are available to process the huge amount of data generated in real life. However, issues of privacy and scalability will constrain the development of machine learning. Federated learning (FL) can prevent privacy leakage by assigning training tasks to multiple clients, thus separating the central server from the local devices. However, FL still suffers from shortcomings such as single-point-failure and malicious data. The emergence of blockchain provides a secure and efficient solution for the deployment of FL. In this paper, we conduct a comprehensive survey of the literature on blockchained FL (BCFL). First, we investigate how blockchain can be applied to federal learning from the perspective of system composition. Then, we analyze the concrete functions of BCFL from the perspective of mechanism design and illustrate what problems blockchain addresses specifically for FL. We also survey the applications of BCFL in reality. Finally, we discuss some challenges and future research directions.

Plagiarism is a pressing concern, even more so with the availability of large language models. Existing plagiarism detection systems reliably find copied and moderately reworded text but fail for idea plagiarism, especially in mathematical science, which heavily uses formal mathematical notation. We make two contributions. First, we establish a taxonomy of mathematical content reuse by annotating potentially plagiarised 122 scientific document pairs. Second, we analyze the best-performing approaches to detect plagiarism and mathematical content similarity on the newly established taxonomy. We found that the best-performing methods for plagiarism and math content similarity achieve an overall detection score (PlagDet) of 0.06 and 0.16, respectively. The best-performing methods failed to detect most cases from all seven newly established math similarity types. Outlined contributions will benefit research in plagiarism detection systems, recommender systems, question-answering systems, and search engines. We make our experiment's code and annotated dataset available to the community: //github.com/gipplab/Taxonomy-of-Mathematical-Plagiarism

The Robust Satisficing (RS) model is an emerging approach to robust optimization, offering streamlined procedures and robust generalization across various applications. However, the statistical theory of RS remains unexplored in the literature. This paper fills in the gap by comprehensively analyzing the theoretical properties of the RS model. Notably, the RS structure offers a more straightforward path to deriving statistical guarantees compared to the seminal Distributionally Robust Optimization (DRO), resulting in a richer set of results. In particular, we establish two-sided confidence intervals for the optimal loss without the need to solve a minimax optimization problem explicitly. We further provide finite-sample generalization error bounds for the RS optimizer. Importantly, our results extend to scenarios involving distribution shifts, where discrepancies exist between the sampling and target distributions. Our numerical experiments show that the RS model consistently outperforms the baseline empirical risk minimization in small-sample regimes and under distribution shifts. Furthermore, compared to the DRO model, the RS model exhibits lower sensitivity to hyperparameter tuning, highlighting its practicability for robustness considerations.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

北京阿比特科技有限公司