We present an efficient low-rank approximation algorithm for non-negative tensors. The algorithm is derived from our two findings: First, we show that rank-1 approximation for tensors can be viewed as a mean-field approximation by treating each tensor as a probability distribution. Second, we theoretically provide a sufficient condition for distribution parameters to reduce Tucker ranks of tensors; interestingly, this sufficient condition can be achieved by iterative application of the mean-field approximation. Since the mean-field approximation is always given as a closed formula, our findings lead to a fast low-rank approximation algorithm without using a gradient method. We empirically demonstrate that our algorithm is faster than the existing non-negative Tucker rank reduction methods and achieves competitive or better approximation of given tensors.
Approval of treatments in areas of high medical need may not follow the two-trials paradigm, but might be granted under conditional approval. Under conditional approval, the evidence for a treatment effect from a pre-market clinical trial has to be substantiated in an independent post-market clinical trial or a longer follow-up duration. Several ways exist to quantify the overall evidence provided by the two trials. We study the applicability of the recently developed harmonic mean Chi-squared test to the conditional drug approval framework. The proposed approach can be used both for the design of the post-market trial and the analysis of the combined evidence provided by both trials. Other methods considered are the two-trials rule, Fisher's criterion and Stouffer's method. For illustration, we apply the harmonic mean Chi-squared test to a drug which received conditional (and eventually final) market licensing by the EMA. A simulation study is conducted to study the operating characteristics in more detail. We finally investigate the applicability of the harmonic mean Chi-squared test to compute the power at interim of an ongoing post-market trial. In contrast to some of the traditional methods, the harmonic mean Chi-squared test always requires a post-market clinical trial. In addition, if the p-value from the pre-market clinical trial is << 0.025, a smaller sample size for the post-market clinical trial is needed than with the two-trials rule.
The Symmetric Tensor Approximation problem (STA) consists of approximating a symmetric tensor or a homogeneous polynomial by a linear combination of symmetric rank-1 tensors or powers of linear forms of low symmetric rank. We present two new Riemannian Newton-type methods for low rank approximation of symmetric tensor with complex coefficients.The first method uses the parametrization of the set of tensors of rank at most $r$ by weights and unit vectors.Exploiting the properties of the apolar product on homogeneous polynomials combined with efficient tools from complex optimization, we provide an explicit and tractable formulation of the Riemannian gradient and Hessian, leading to Newton iterations with local quadratic convergence. We prove that under some regularity conditions on non-defective tensors in the neighborhood of the initial point, the Newton iteration (completed with a trust-region scheme) is converging to a local minimum.The second method is a Riemannian Gauss--Newton method on the Cartesian product of Veronese manifolds. An explicit orthonormal basis of the tangent space of this Riemannian manifold is described. We deduce the Riemannian gradient and the Gauss--Newton approximation of the Riemannian Hessian. We present a new retraction operator on the Veronese manifold.We analyze the numerical behavior of these methods, with an initial point provided by Simultaneous Matrix Diagonalisation (SMD).Numerical experiments show the good numerical behavior of the two methods in different cases and in comparison with existing state-of-the-art methods.
Given $(a_1, \dots, a_n, t) \in \mathbb{Z}_{\geq 0}^{n + 1}$, the Subset Sum problem ($\mathsf{SSUM}$) is to decide whether there exists $S \subseteq [n]$ such that $\sum_{i \in S} a_i = t$. There is a close variant of the $\mathsf{SSUM}$, called $\mathsf{Subset~Product}$. Given positive integers $a_1, ..., a_n$ and a target integer $t$, the $\mathsf{Subset~Product}$ problem asks to determine whether there exists a subset $S \subseteq [n]$ such that $\prod_{i \in S} a_i=t$. There is a pseudopolynomial time dynamic programming algorithm, due to Bellman (1957) which solves the $\mathsf{SSUM}$ and $\mathsf{Subset~Product}$ in $O(nt)$ time and $O(t)$ space. In the first part, we present {\em search} algorithms for variants of the Subset Sum problem. Our algorithms are parameterized by $k$, which is a given upper bound on the number of realisable sets (i.e.,~number of solutions, summing exactly $t$). We show that $\mathsf{SSUM}$ with a unique solution is already NP-hard, under randomized reduction. This makes the regime of parametrized algorithms, in terms of $k$, very interesting. Subsequently, we present an $\tilde{O}(k\cdot (n+t))$ time deterministic algorithm, which finds the hamming weight of all the realisable sets for a subset sum instance. We also give a poly$(knt)$-time and $O(\log(knt))$-space deterministic algorithm that finds all the realisable sets for a subset sum instance. In the latter part, we present a simple and elegant randomized $\tilde{O}(n + t)$ time algorithm for $\mathsf{Subset~Product}$. Moreover, we also present a poly$(nt)$ time and $O(\log^2 (nt))$ space deterministic algorithm for the same. We study these problems in the unbounded setting as well. Our algorithms use multivariate FFT, power series and number-theoretic techniques, introduced by Jin and Wu (SOSA'19) and Kane (2010).
We explore the efficient estimation of statistical quantities, particularly rare event probabilities, for stochastic reaction networks. We propose a novel importance sampling (IS) approach to improve the efficiency of Monte Carlo (MC) estimators when based on an approximate tau-leap scheme. In the IS framework, it is crucial to choose an appropriate change of probability measure for achieving substantial variance reduction. Based on an original connection between finding the optimal IS parameters within a class of probability measures and a stochastic optimal control (SOC) formulation, we propose an automated approach to obtain a highly efficient path-dependent measure change. The optimal IS parameters are obtained by solving a variance minimization problem. We derive an associated backward equation solved by these optimal parameters. Given the challenge of analytically solving this backward equation, we propose a numerical dynamic programming algorithm to approximate the optimal control parameters. To mitigate the curse of dimensionality issue caused by solving the backward equation in the multi-dimensional case, we propose a learning-based method that approximates the value function using a neural network, the parameters of which are determined via stochastic optimization. Our numerical experiments show that our learning-based IS approach substantially reduces the variance of the MC estimator. Moreover, when applying the numerical dynamic programming approach for the one-dimensional case, we obtained a variance that decays at a rate of $\mathcal{O}(\Delta t)$ for a step size of $\Delta t$, compared to $\mathcal{O}(1)$ for a standard MC estimator. For a given prescribed error tolerance, $\text{TOL}$, this implies an improvement in the computational complexity to become $\mathcal{O}(\text{TOL}^{-2})$ instead of $\mathcal{O}(\text{TOL}^{-3})$ when using a standard MC estimator.
Computational methods for fractional differential equations exhibit essential instability. Even a minor modification of the coefficients or other entry data may switch good results to the divergent. The goal of this paper is to suggest the reliable dual approach which fixes this inconsistency. We suggest to use two parallel methods based on the transformation of fractional derivatives through integration by parts or by means of substitution. We introduce the method of substitution and choose the proper discretization scheme that fits the grid points for the by-parts method. The solution is reliable only if both methods produce the same results. As an additional control tool, the Taylor series expansion allows to estimate the approximation errors for fractional derivatives. In order to demonstrate the proposed dual approach, we apply it to linear, quasilinear and semilinear equations and obtain very good precision of the results. The provided examples and counterexamples support the necessity to use the dual approach because either method, used separately, may produce incorrect results. The order of the exactness is close to the exactness of fractional derivatives approximations.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.
This paper tackles the problem of video object segmentation, given some user annotation which indicates the object of interest. The problem is formulated as pixel-wise retrieval in a learned embedding space: we embed pixels of the same object instance into the vicinity of each other, using a fully convolutional network trained by a modified triplet loss as the embedding model. Then the annotated pixels are set as reference and the rest of the pixels are classified using a nearest-neighbor approach. The proposed method supports different kinds of user input such as segmentation mask in the first frame (semi-supervised scenario), or a sparse set of clicked points (interactive scenario). In the semi-supervised scenario, we achieve results competitive with the state of the art but at a fraction of computation cost (275 milliseconds per frame). In the interactive scenario where the user is able to refine their input iteratively, the proposed method provides instant response to each input, and reaches comparable quality to competing methods with much less interaction.
Image segmentation is the process of partitioning the image into significant regions easier to analyze. Nowadays, segmentation has become a necessity in many practical medical imaging methods as locating tumors and diseases. Hidden Markov Random Field model is one of several techniques used in image segmentation. It provides an elegant way to model the segmentation process. This modeling leads to the minimization of an objective function. Conjugate Gradient algorithm (CG) is one of the best known optimization techniques. This paper proposes the use of the Conjugate Gradient algorithm (CG) for image segmentation, based on the Hidden Markov Random Field. Since derivatives are not available for this expression, finite differences are used in the CG algorithm to approximate the first derivative. The approach is evaluated using a number of publicly available images, where ground truth is known. The Dice Coefficient is used as an objective criterion to measure the quality of segmentation. The results show that the proposed CG approach compares favorably with other variants of Hidden Markov Random Field segmentation algorithms.
This paper describes a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image of the matrix, called a sketch. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provably correct. Moreover, each method is accompanied by an informative error bound that allows users to select parameters a priori to achieve a given approximation quality. These claims are supported by numerical experiments with real and synthetic data.
From only positive (P) and unlabeled (U) data, a binary classifier could be trained with PU learning, in which the state of the art is unbiased PU learning. However, if its model is very flexible, empirical risks on training data will go negative, and we will suffer from serious overfitting. In this paper, we propose a non-negative risk estimator for PU learning: when getting minimized, it is more robust against overfitting, and thus we are able to use very flexible models (such as deep neural networks) given limited P data. Moreover, we analyze the bias, consistency, and mean-squared-error reduction of the proposed risk estimator, and bound the estimation error of the resulting empirical risk minimizer. Experiments demonstrate that our risk estimator fixes the overfitting problem of its unbiased counterparts.