Ne\v{s}et\v{r}il and Ossona de Mendez recently proposed a new definition of graph convergence called structural convergence. The structural convergence framework is based on the probability of satisfaction of logical formulas from a fixed fragment of first-order formulas. The flexibility of choosing the fragment allows to unify the classical notions of convergence for sparse and dense graphs. Since the field is relatively young, the range of examples of convergent sequences is limited and only a few methods of construction are known. Our aim is to extend the variety of constructions by considering the gadget construction. We show that, when restricting to the set of sentences, the application of gadget construction on elementarily convergent sequences yields an elementarily convergent sequence. On the other hand, we show counterexamples witnessing that a generalization to the full first-order convergence is not possible without additional assumptions. We give several different sufficient conditions to ensure the full convergence. One of them states that the resulting sequence is first-order convergent if the replaced edges are dense in the original sequence of structures.
Nonparametric maximum likelihood estimators (MLEs) in inverse problems often have non-normal limit distributions, like Chernoff's distribution. However, if one considers smooth functionals of the model, with corresponding functionals of the MLE, one gets normal limit distributions and faster rates of convergence. We demonstrate this for a model for the incubation time of a disease. The usual approach in the latter models is to use parametric distributions, like Weibull and gamma distributions, which leads to inconsistent estimators. Smoothed bootstrap methods are discussed for constructing confidence intervals. The classical bootstrap, based on the nonparametric MLE itself, has been proved to be inconsistent in this situation.
Graphical models use graphs to represent conditional independence structure in the distribution of a random vector. In stochastic processes, graphs may represent so-called local independence or conditional Granger causality. Under some regularity conditions, a local independence graph implies a set of independences using a graphical criterion known as $\delta$-separation, or using its generalization, $\mu$-separation. This is a stochastic process analogue of $d$-separation in DAGs. However, there may be more independences than implied by this graph and this is a violation of so-called faithfulness. We characterize faithfulness in local independence graphs and give a method to construct a faithful graph from any local independence model such that the output equals the true graph when Markov and faithfulness assumptions hold. We discuss various assumptions that are weaker than faithfulness, and we explore different structure learning algorithms and their properties under varying assumptions.
We introduce novel Markov chain Monte Carlo (MCMC) algorithms based on numerical approximations of piecewise-deterministic Markov processes obtained with the framework of splitting schemes. We present unadjusted as well as adjusted algorithms, for which the asymptotic bias due to the discretisation error is removed applying a non-reversible Metropolis-Hastings filter. In a general framework we demonstrate that the unadjusted schemes have weak error of second order in the step size, while typically maintaining a computational cost of only one gradient evaluation of the negative log-target function per iteration. Focusing then on unadjusted schemes based on the Bouncy Particle and Zig-Zag samplers, we provide conditions ensuring geometric ergodicity and consider the expansion of the invariant measure in terms of the step size. We analyse the dependence of the leading term in this expansion on the refreshment rate and on the structure of the splitting scheme, giving a guideline on which structure is best. Finally, we illustrate the competitiveness of our samplers with numerical experiments on a Bayesian imaging inverse problem and a system of interacting particles.
We propose an approach to 3D reconstruction via inverse procedural modeling and investigate two variants of this approach. The first option consists in the fitting set of input parameters using a genetic algorithm. We demonstrate the results of our work on tree models, complex objects, with the reconstruction of which most existing methods cannot handle. The second option allows us to significantly improve the precision by using gradients within memetic algorithm, differentiable rendering and also differentiable procedural generators. In our work we see 2 main contributions. First, we propose a method to join differentiable rendering and inverse procedural modeling. This gives us an opportunity to reconstruct 3D model more accurately than existing approaches when a small number of input images are available (even for single image). Second, we join both differentiable and non-differentiable procedural generators in a single framework which allow us to apply inverse procedural modeling to fairly complex generators: when gradient is available, reconstructions is precise, when gradient is not available, reconstruction is approximate, but always high quality without visual artifacts.
We study how to construct a stochastic process on a finite interval with given `roughness' and finite joint moments of marginal distributions. We first extend Ciesielski's isomorphism along a general sequence of partitions, and provide a characterization of H\"older regularity of a function in terms of its Schauder coefficients. Using this characterization we provide a better (pathwise) estimator of H\"older exponent. As an additional application, we construct fake (fractional) Brownian motions with some path properties and finite moments of marginal distributions same as (fractional) Brownian motions. These belong to non-Gaussian families of stochastic processes which are statistically difficult to distinguish from real (fractional) Brownian motions.
We describe a new dependent-rounding algorithmic framework for bipartite graphs. Given a fractional assignment $y$ of values to edges of graph $G = (U \cup V, E)$, the algorithms return an integral solution $Y$ such that each right-node $v \in V$ has at most one neighboring edge $f$ with $Y_f = 1$, and where the variables $Y_e$ also satisfy broad nonpositive-correlation properties. In particular, for any edges $e_1, e_2$ sharing a left-node $u \in U$, the variables $Y_{e_1}, Y_{e_2}$ have strong negative-correlation properties, i.e. the expectation of $Y_{e_1} Y_{e_2}$ is significantly below $y_{e_1} y_{e_2}$. This algorithm is based on generating negatively-correlated Exponential random variables and using them in a contention-resolution scheme inspired by an algorithm Im & Shadloo (2020). Our algorithm gives stronger and much more flexible negative correlation properties. Dependent rounding schemes with negative correlation properties have been used for approximation algorithms for job-scheduling on unrelated machines to minimize weighted completion times (Bansal, Srinivasan, & Svensson (2021), Im & Shadloo (2020), Im & Li (2023)). Using our new dependent-rounding algorithm, among other improvements, we obtain a $1.4$-approximation for this problem. This significantly improves over the prior $1.45$-approximation ratio of Im & Li (2023).
We present a semi-Lagrangian characteristic mapping method for the incompressible Euler equations on a rotating sphere. The numerical method uses a spatio-temporal discretization of the inverse flow map generated by the Eulerian velocity as a composition of sub-interval flows formed by $C^1$ spherical spline interpolants. This approximation technique has the capacity of resolving sub-grid scales generated over time without increasing the spatial resolution of the computational grid. The numerical method is analyzed and validated using standard test cases yielding third-order accuracy in the supremum norm. Numerical experiments illustrating the unique resolution properties of the method are performed and demonstrate the ability to reproduce the forward energy cascade at sub-grid scales by upsampling the numerical solution.
The Collatz hypothesis is a theorem of the algorithmic theory of natural numbers. We prove the (algorithmic) formula that expresses the halting property of Collatz algorithm. The observation that Collatz's theorem cannot be proved in any elementary number theory completes the main result.
We develop randomized matrix-free algorithms for estimating partial traces. Our algorithm improves on the typicality-based approach used in [T. Chen and Y-C. Cheng, Numerical computation of the equilibrium-reduced density matrix for strongly coupled open quantum systems, J. Chem. Phys. 157, 064106 (2022)] by deflating important subspaces (e.g. corresponding to the low-energy eigenstates) explicitly. This results in a significant variance reduction for matrices with quickly decaying singular values. We then apply our algorithm to study the thermodynamics of several Heisenberg spin systems, particularly the entanglement spectrum and ergotropy.
Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.