亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Symmetry is ubiquitous in many real-world phenomena and tasks, such as physics, images, and molecular simulations. Empirical studies have demonstrated that incorporating symmetries into generative models can provide better generalization and sampling efficiency when the underlying data distribution has group symmetry. In this work, we provide the first theoretical analysis and guarantees of score-based generative models (SGMs) for learning distributions that are invariant with respect to some group symmetry and offer the first quantitative comparison between data augmentation and adding equivariant inductive bias. First, building on recent works on the Wasserstein-1 ($\mathbf{d}_1$) guarantees of SGMs and empirical estimations of probability divergences under group symmetry, we provide an improved $\mathbf{d}_1$ generalization bound when the data distribution is group-invariant. Second, we describe the inductive bias of equivariant SGMs using Hamilton-Jacobi-Bellman theory, and rigorously demonstrate that one can learn the score of a symmetrized distribution using equivariant vector fields without data augmentations through the analysis of the optimality and equivalence of score-matching objectives. This also provides practical guidance that one does not have to augment the dataset as long as the vector field or the neural network parametrization is equivariant. Moreover, we quantify the impact of not incorporating equivariant structure into the score parametrization, by showing that non-equivariant vector fields can yield worse generalization bounds. This can be viewed as a type of model-form error that describes the missing structure of non-equivariant vector fields. Numerical simulations corroborate our analysis and highlight that data augmentations cannot replace the role of equivariant vector fields.

相關內容

Large Language Models (LLMs) have demonstrated remarkable capabilities in conversational tasks. Embodying an LLM as a virtual human allows users to engage in face-to-face social interactions in Virtual Reality. However, the influence of person- and task-related factors in social interactions with LLM-controlled agents remains unclear. In this study, forty-six participants interacted with a virtual agent whose persona was manipulated as extravert or introvert in three different conversational tasks (small talk, knowledge test, convincing). Social-evaluation, emotional experience, and realism were assessed using ratings. Interactive engagement was measured by quantifying participants' words and conversational turns. Finally, we measured participants' willingness to ask the agent for help during the knowledge test. Our findings show that the extraverted agent was more positively evaluated, elicited a more pleasant experience and greater engagement, and was assessed as more realistic compared to the introverted agent. Whereas persona did not affect the tendency to ask for help, participants were generally more confident in the answer when they had help of the LLM. Variation of personality traits of LLM-controlled embodied virtual agents, therefore, affects social-emotional processing and behavior in virtual interactions. Embodied virtual agents allow the presentation of naturalistic social encounters in a virtual environment.

We propose a deterministic method to find all holographic entropy inequalities and prove the completeness of our method. We use a triality between holographic entropy inequalities, contraction maps and partial cubes. More specifically, the validity of a holographic entropy inequality is implied by the existence of a contraction map, which we prove to be equivalent to finding an isometric embedding of a contracted graph. Thus, by virtue of the completeness of the contraction map proof method, the problem of finding all holographic entropy inequalities is equivalent to the problem of finding all contraction maps, which we translate to a problem of finding all image graph partial cubes. We give an algorithmic solution to this problem and characterize the complexity of our method. We also demonstrate interesting by-products, most notably, a procedure to generate candidate quantum entropy inequalities.

We provide abstract, general and highly uniform rates of asymptotic regularity for a generalized stochastic Halpern-style iteration, which incorporates a second mapping in the style of a Krasnoselskii-Mann iteration. This iteration is general in two ways: First, it incorporates stochasticity in a completely abstract way rather than fixing a sampling method; secondly, it includes as special cases stochastic versions of various schemes from the optimization literature, including Halpern's iteration as well as a Krasnoselskii-Mann iteration with Tikhonov regularization terms in the sense of Bo\c{t}, Csetnek and Meier. For these particular cases, we in particular obtain linear rates of asymptotic regularity, matching (or improving) the currently best known rates for these iterations in stochastic optimization, and quadratic rates of asymptotic regularity are obtained in the context of inner product spaces for the general iteration. We utilize these rates to give bounds on the oracle complexity of such iterations under suitable variance assumptions and batching strategies, again presented in an abstract style. Finally, we sketch how the schemes presented here can be instantiated in the context of reinforcement learning to yield novel methods for Q-learning.

In many real-world optimization problems, we have prior information about what objective function values are achievable. In this paper, we study the scenario that we have either exact knowledge of the minimum value or a, possibly inexact, lower bound on its value. We propose bound-aware Bayesian optimization (BABO), a Bayesian optimization method that uses a new surrogate model and acquisition function to utilize such prior information. We present SlogGP, a new surrogate model that incorporates bound information and adapts the Expected Improvement (EI) acquisition function accordingly. Empirical results on a variety of benchmarks demonstrate the benefit of taking prior information about the optimal value into account, and that the proposed approach significantly outperforms existing techniques. Furthermore, we notice that even in the absence of prior information on the bound, the proposed SlogGP surrogate model still performs better than the standard GP model in most cases, which we explain by its larger expressiveness.

In decision-making, maxitive functions are used for worst-case and best-case evaluations. Maxitivity gives rise to a rich structure that is well-studied in the context of the pointwise order. In this article, we investigate maxitivity with respect to general preorders and provide a representation theorem for such functionals. The results are illustrated for different stochastic orders in the literature, including the usual stochastic order, the increasing convex/concave order, and the dispersive order.

A Riemannian geometric framework for Markov chain Monte Carlo (MCMC) is developed where using the Fisher-Rao metric on the manifold of probability density functions (pdfs), informed proposal densities for Metropolis-Hastings (MH) algorithms are constructed. We exploit the square-root representation of pdfs under which the Fisher-Rao metric boils down to the standard $L^2$ metric on the positive orthant of the unit hypersphere. The square-root representation allows us to easily compute the geodesic distance between densities, resulting in a straightforward implementation of the proposed geometric MCMC methodology. Unlike the random walk MH that blindly proposes a candidate state using no information about the target, the geometric MH algorithms move an uninformed base density (e.g., a random walk proposal density) towards different global/local approximations of the target density, allowing effective exploration of the distribution simultaneously at different granular levels of the state space. We compare the proposed geometric MH algorithm with other MCMC algorithms for various Markov chain orderings, namely the covariance, efficiency, Peskun, and spectral gap orderings. The superior performance of the geometric algorithms over other MH algorithms like the random walk Metropolis, independent MH, and variants of Metropolis adjusted Langevin algorithms is demonstrated in the context of various multimodal, nonlinear, and high dimensional examples. In particular, we use extensive simulation and real data applications to compare these algorithms for analyzing mixture models, logistic regression models, spatial generalized linear mixed models and ultra-high dimensional Bayesian variable selection models. A publicly available R package accompanies the article.

We consider linear models with scalar responses and covariates from a separable Hilbert space. The aim is to detect change points in the error distribution, based on sequential residual empirical distribution functions. Expansions for those estimated functions are more challenging in models with infinite-dimensional covariates than in regression models with scalar or vector-valued covariates due to a slower rate of convergence of the parameter estimators. Yet the suggested change point test is asymptotically distribution-free and consistent for one-change point alternatives. In the latter case we also show consistency of a change point estimator.

Interpreting data with mathematical models is an important aspect of real-world applied mathematical modeling. Very often we are interested to understand the extent to which a particular data set informs and constrains model parameters. This question is closely related to the concept of parameter identifiability, and in this article we present a series of computational exercises to introduce tools that can be used to assess parameter identifiability, estimate parameters and generate model predictions. Taking a likelihood-based approach, we show that very similar ideas and algorithms can be used to deal with a range of different mathematical modelling frameworks. The exercises and results presented in this article are supported by a suite of open access codes that can be accessed on GitHub.

Previous work on fatigue prediction in Powder Bed Fusion - Laser Beam has shown that the estimate of the largest pore size within the stressed volume is correlated with the resulting fatigue behavior in porosity-driven failures. However, single value estimates for the largest pore size are insufficient to capture the experimentally observed scatter in fatigue properties. To address this gap, in this work, we incorporate uncertainty quantification into extreme value statistics to estimate the largest pore size distribution in a given volume of material by capturing uncertainty in the number of pores present and the upper tail parameters. We then applied this statistical framework to compare the porosity equivalence between two geometries: a 4-point bend fatigue specimen and an axial fatigue specimen in the gauge section. Both geometries were manufactured with the same process conditions using Ti-6Al-4V, followed by porosity characterization via X-ray Micro CT. The results show that the largest pore size distribution of the 4-point bend specimen is insufficient to accurately capture the largest pore size observed in the axial fatigue specimen, despite similar dimensions. Based on our findings, we provide insight into the design of witness coupons that exhibit part-to-coupon porosity equivalence for fatigue.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

北京阿比特科技有限公司