亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Although Split Federated Learning (SFL) is good at enabling knowledge sharing among resource-constrained clients, it suffers from the problem of low training accuracy due to the neglect of data heterogeneity and catastrophic forgetting. To address this issue, we propose a novel SFL approach named KoReA-SFL, which adopts a multi-model aggregation mechanism to alleviate gradient divergence caused by heterogeneous data and a knowledge replay strategy to deal with catastrophic forgetting. Specifically, in KoReA-SFL cloud servers (i.e., fed server and main server) maintain multiple branch model portions rather than a global portion for local training and an aggregated master-model portion for knowledge sharing among branch portions. To avoid catastrophic forgetting, the main server of KoReA-SFL selects multiple assistant devices for knowledge replay according to the training data distribution of each server-side branch-model portion. Experimental results obtained from non-IID and IID scenarios demonstrate that KoReA-SFL significantly outperforms conventional SFL methods (by up to 23.25\% test accuracy improvement).

相關內容

通過學習、實踐或(huo)探索所獲得的認識、判(pan)斷或(huo)技能(neng)。

(Renyi Qu's Master's Thesis) Recent advancements in interpretable models for vision-language tasks have achieved competitive performance; however, their interpretability often suffers due to the reliance on unstructured text outputs from large language models (LLMs). This introduces randomness and compromises both transparency and reliability, which are essential for addressing safety issues in AI systems. We introduce \texttt{Hi-CoDe} (Hierarchical Concept Decomposition), a novel framework designed to enhance model interpretability through structured concept analysis. Our approach consists of two main components: (1) We use GPT-4 to decompose an input image into a structured hierarchy of visual concepts, thereby forming a visual concept tree. (2) We then employ an ensemble of simple linear classifiers that operate on concept-specific features derived from CLIP to perform classification. Our approach not only aligns with the performance of state-of-the-art models but also advances transparency by providing clear insights into the decision-making process and highlighting the importance of various concepts. This allows for a detailed analysis of potential failure modes and improves model compactness, therefore setting a new benchmark in interpretability without compromising the accuracy.

In the quest for artificial general intelligence, Multi-modal Large Language Models (MLLMs) have emerged as a focal point in recent advancements. However, the predominant focus remains on developing their capabilities in static image understanding. The potential of MLLMs in processing sequential visual data is still insufficiently explored, highlighting the absence of a comprehensive, high-quality assessment of their performance. In this paper, we introduce Video-MME, the first-ever full-spectrum, Multi-Modal Evaluation benchmark of MLLMs in Video analysis. Our work distinguishes from existing benchmarks through four key features: 1) Diversity in video types, spanning 6 primary visual domains with 30 subfields to ensure broad scenario generalizability; 2) Duration in temporal dimension, encompassing both short-, medium-, and long-term videos, ranging from 11 seconds to 1 hour, for robust contextual dynamics; 3) Breadth in data modalities, integrating multi-modal inputs besides video frames, including subtitles and audios, to unveil the all-round capabilities of MLLMs; 4) Quality in annotations, utilizing rigorous manual labeling by expert annotators to facilitate precise and reliable model assessment. 900 videos with a total of 256 hours are manually selected and annotated by repeatedly viewing all the video content, resulting in 2,700 question-answer pairs. With Video-MME, we extensively evaluate various state-of-the-art MLLMs, including GPT-4 series and Gemini 1.5 Pro, as well as open-source image models like InternVL-Chat-V1.5 and video models like LLaVA-NeXT-Video. Our experiments reveal that Gemini 1.5 Pro is the best-performing commercial model, significantly outperforming the open-source models. Our dataset along with these findings underscores the need for further improvements in handling longer sequences and multi-modal data. Project Page: //video-mme.github.io

We introduce API Pack, a massive multi-programming language dataset containing more than 1 million instruction-API call pairs to improve the API call generation capabilities of large language models. By fine-tuning CodeLlama-13B on 20,000 Python instances from API Pack, we achieved around 10% and 5% higher accuracy compared to GPT-3.5 and GPT-4, respectively, in generating unseen API calls. Fine-tuning on API Pack enables cross-programming language generalization by leveraging a large amount of data in one language and small amounts of data from other languages. Scaling the training data to 1 million instances further improves the model's generalization to new APIs not encountered during training. We open-source the API Pack dataset, trained models, and associated source code at //github.com/zguo0525/API-Pack to facilitate further research.

Large language models~(LLMs) have recently demonstrated promising performance in many tasks. However, the high storage and computational cost of LLMs has become a challenge for deploying LLMs. Weight quantization has been widely used for model compression, which can reduce both storage and computational cost. Most existing weight quantization methods for LLMs use a rank-one codebook for quantization, which results in substantial accuracy loss when the compression ratio is high. In this paper, we propose a novel weight quantization method, called low-rank codebook based quantization~(LCQ), for LLMs. LCQ adopts a low-rank codebook, the rank of which can be larger than one, for quantization. Experiments show that LCQ can achieve better accuracy than existing methods with a negligibly extra storage cost.

Diffusion Probabilistic Models (DPMs) have emerged as a powerful class of deep generative models, achieving remarkable performance in image synthesis tasks. However, these models face challenges in terms of widespread adoption due to their reliance on sequential denoising steps during sample generation. This dependence leads to substantial computational requirements, making them unsuitable for resource-constrained or real-time processing systems. To address these challenges, we propose a novel method that integrates denoising phases directly into the model's architecture, thereby reducing the need for resource-intensive computations. Our approach combines diffusion models with generative adversarial networks (GANs) through knowledge distillation, enabling more efficient training and evaluation. By utilizing a pre-trained diffusion model as a teacher model, we train a student model through adversarial learning, employing layerwise transformations for denoising and submodules for predicting the teacher model's output at various points in time. This integration significantly reduces the number of parameters and denoising steps required, leading to improved sampling speed at test time. We validate our method with extensive experiments, demonstrating comparable performance with reduced computational requirements compared to existing approaches. By enabling the deployment of diffusion models on resource-constrained devices, our research mitigates their computational burden and paves the way for wider accessibility and practical use across the research community and end-users. Our code is publicly available at //github.com/kidist-amde/Adv-KD

In the rapidly evolving field of healthcare and beyond, the integration of generative AI in Electronic Health Records (EHRs) represents a pivotal advancement, addressing a critical gap in current information extraction techniques. This paper introduces GAMedX, a Named Entity Recognition (NER) approach utilizing Large Language Models (LLMs) to efficiently extract entities from medical narratives and unstructured text generated throughout various phases of the patient hospital visit. By addressing the significant challenge of processing unstructured medical text, GAMedX leverages the capabilities of generative AI and LLMs for improved data extraction. Employing a unified approach, the methodology integrates open-source LLMs for NER, utilizing chained prompts and Pydantic schemas for structured output to navigate the complexities of specialized medical jargon. The findings reveal significant ROUGE F1 score on one of the evaluation datasets with an accuracy of 98\%. This innovation enhances entity extraction, offering a scalable, cost-effective solution for automated forms filling from unstructured data. As a result, GAMedX streamlines the processing of unstructured narratives, and sets a new standard in NER applications, contributing significantly to theoretical and practical advancements beyond the medical technology sphere.

Speculative decoding (SD) has attracted a significant amount of research attention due to the substantial speedup it can achieve for LLM inference. However, despite the high speedups they offer, speculative decoding methods often achieve optimal performance on high-end devices or with a substantial GPU memory overhead. Given limited memory and the necessity of quantization, a high-performing model on a high-end GPU can slow down by up to 7 times. To this end, we propose Skippy Simultaneous Speculative Decoding (or S3D), a cost-effective self-speculative SD method based on simultaneous multi-token decoding and mid-layer skipping. When compared against recent effective open-source SD systems, our method has achieved one of the top performance-memory ratios while requiring minimal architecture changes and training data. Leveraging our memory efficiency, we created a smaller yet more effective SD model based on Phi-3. It is 1.4 to 2 times faster than the quantized EAGLE model and operates in half-precision while using less VRAM.

The Vision-Language Pre-training (VLP) models like CLIP have gained popularity in recent years. However, many works found that the social biases hidden in CLIP easily manifest in downstream tasks, especially in image retrieval, which can have harmful effects on human society. In this work, we propose FairCLIP to eliminate the social bias in CLIP-based image retrieval without damaging the retrieval performance achieving the compatibility between the debiasing effect and the retrieval performance. FairCLIP is divided into two steps: Attribute Prototype Learning (APL) and Representation Neutralization (RN). In the first step, we extract the concepts needed for debiasing in CLIP. We use the query with learnable word vector prefixes as the extraction structure. In the second step, we first divide the attributes into target and bias attributes. By analysis, we find that both attributes have an impact on the bias. Therefore, we try to eliminate the bias by using Re-Representation Matrix (RRM) to achieve the neutralization of the representation. We compare the debiasing effect and retrieval performance with other methods, and experiments demonstrate that FairCLIP can achieve the best compatibility. Although FairCLIP is used to eliminate bias in image retrieval, it achieves the neutralization of the representation which is common to all CLIP downstream tasks. This means that FairCLIP can be applied as a general debiasing method for other fairness issues related to CLIP.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Deep reinforcement learning has recently shown many impressive successes. However, one major obstacle towards applying such methods to real-world problems is their lack of data-efficiency. To this end, we propose the Bottleneck Simulator: a model-based reinforcement learning method which combines a learned, factorized transition model of the environment with rollout simulations to learn an effective policy from few examples. The learned transition model employs an abstract, discrete (bottleneck) state, which increases sample efficiency by reducing the number of model parameters and by exploiting structural properties of the environment. We provide a mathematical analysis of the Bottleneck Simulator in terms of fixed points of the learned policy, which reveals how performance is affected by four distinct sources of error: an error related to the abstract space structure, an error related to the transition model estimation variance, an error related to the transition model estimation bias, and an error related to the transition model class bias. Finally, we evaluate the Bottleneck Simulator on two natural language processing tasks: a text adventure game and a real-world, complex dialogue response selection task. On both tasks, the Bottleneck Simulator yields excellent performance beating competing approaches.

北京阿比特科技有限公司