亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Measurement error occurs when a set of covariates influencing a response variable are corrupted by noise. This can lead to misleading inference outcomes, particularly in problems where accurately estimating the relationship between covariates and response variables is crucial, such as causal effect estimation. Existing methods for dealing with measurement error often rely on strong assumptions such as knowledge of the error distribution or its variance and availability of replicated measurements of the covariates. We propose a Bayesian Nonparametric Learning framework which is robust to mismeasured covariates, does not require the preceding assumptions, and is able to incorporate prior beliefs about the true error distribution. Our approach gives rise to two methods that are robust to measurement error via different loss functions: one based on the Total Least Squares objective and the other based on Maximum Mean Discrepancy (MMD). The latter allows for generalisation to non-Gaussian distributed errors and non-linear covariate-response relationships. We provide bounds on the generalisation error using the MMD-loss and showcase the effectiveness of the proposed framework versus prior art in real-world mental health and dietary datasets that contain significant measurement errors.

相關內容

Network operators and researchers frequently use Internet measurement platforms (IMPs), such as RIPE Atlas, RIPE RIS, or RouteViews for, e.g., monitoring network performance, detecting routing events, topology discovery, or route optimization. To interpret the results of their measurements and avoid pitfalls or wrong generalizations, users must understand a platform's limitations. To this end, this paper studies an important limitation of IMPs, the \textit{bias}, which exists due to the non-uniform deployment of the vantage points. Specifically, we introduce a generic framework to systematically and comprehensively quantify the multi-dimensional (e.g., across location, topology, network types, etc.) biases of IMPs. Using the framework and open datasets, we perform a detailed analysis of biases in IMPs that confirms well-known (to the domain experts) biases and sheds light on less-known or unexplored biases. To facilitate IMP users to obtain awareness of and explore bias in their measurements, as well as further research and analyses (e.g., methods for mitigating bias), we publicly share our code and data, and provide online tools (API, Web app, etc.) that calculate and visualize the bias in measurement setups.

Representation learning plays a crucial role in automated feature selection, particularly in the context of high-dimensional data, where non-parametric methods often struggle. In this study, we focus on supervised learning scenarios where the pertinent information resides within a lower-dimensional linear subspace of the data, namely the multi-index model. If this subspace were known, it would greatly enhance prediction, computation, and interpretation. To address this challenge, we propose a novel method for linear feature learning with non-parametric prediction, which simultaneously estimates the prediction function and the linear subspace. Our approach employs empirical risk minimisation, augmented with a penalty on function derivatives, ensuring versatility. Leveraging the orthogonality and rotation invariance properties of Hermite polynomials, we introduce our estimator, named RegFeaL. By utilising alternative minimisation, we iteratively rotate the data to improve alignment with leading directions and accurately estimate the relevant dimension in practical settings. We establish that our method yields a consistent estimator of the prediction function with explicit rates. Additionally, we provide empirical results demonstrating the performance of RegFeaL in various experiments.

Treatment effect estimates are often available from randomized controlled trials as a single average treatment effect for a certain patient population. Estimates of the conditional average treatment effect (CATE) are more useful for individualized treatment decision making, but randomized trials are often too small to estimate the CATE. Examples in medical literature make use of the relative treatment effect (e.g. an odds-ratio) reported by randomized trials to estimate the CATE using large observational datasets. One approach to estimating these CATE models is by using the relative treatment effect as an offset, while estimating the covariate-specific untreated risk. We observe that the odds-ratios reported in randomized controlled trials are not the odds-ratios that are needed in offset models because trials often report the marginal odds-ratio. We introduce a constraint or regularizer to better use marginal odds-ratios from randomized controlled trials and find that under the standard observational causal inference assumptions this approach provides a consistent estimate of the CATE. Next, we show that the offset approach is not valid for CATE estimation in the presence of unobserved confounding. We study if the offset assumption and the marginal constraint lead to better approximations of the CATE relative to the alternative of using the average treatment effect estimate from the randomized trial. We empirically show that when the underlying CATE has sufficient variation, the constraint and offset approaches lead to closer approximations to the CATE.

Medical image segmentation is a crucial task that relies on the ability to accurately identify and isolate regions of interest in medical images. Thereby, generative approaches allow to capture the statistical properties of segmentation masks that are dependent on the respective structures. In this work we propose a conditional score-based generative modeling framework to represent the signed distance function (SDF) leading to an implicit distribution of segmentation masks. The advantage of leveraging the SDF is a more natural distortion when compared to that of binary masks. By learning the score function of the conditional distribution of SDFs we can accurately sample from the distribution of segmentation masks, allowing for the evaluation of statistical quantities. Thus, this probabilistic representation allows for the generation of uncertainty maps represented by the variance, which can aid in further analysis and enhance the predictive robustness. We qualitatively and quantitatively illustrate competitive performance of the proposed method on a public nuclei and gland segmentation data set, highlighting its potential utility in medical image segmentation applications.

The number of modes in a probability density function is representative of the model's complexity and can also be viewed as the number of existing subpopulations. Despite its relevance, little research has been devoted to its estimation. Focusing on the univariate setting, we propose a novel approach targeting prediction accuracy inspired by some overlooked aspects of the problem. We argue for the need for structure in the solutions, the subjective and uncertain nature of modes, and the convenience of a holistic view blending global and local density properties. Our method builds upon a combination of flexible kernel estimators and parsimonious compositional splines. Feature exploration, model selection and mode testing are implemented in the Bayesian inference paradigm, providing soft solutions and allowing to incorporate expert judgement in the process. The usefulness of our proposal is illustrated through a case study in sports analytics, showcasing multiple companion visualisation tools. A thorough simulation study demonstrates that traditional modality-driven approaches paradoxically struggle to provide accurate results. In this context, our method emerges as a top-tier alternative offering innovative solutions for analysts.

The ability to envision future states is crucial to informed decision making while interacting with dynamic environments. With cameras providing a prevalent and information rich sensing modality, the problem of predicting future states from image sequences has garnered a lot of attention. Current state of the art methods typically train large parametric models for their predictions. Though often able to predict with accuracy, these models rely on the availability of large training datasets to converge to useful solutions. In this paper we focus on the problem of predicting future images of an image sequence from very little training data. To approach this problem, we use non-parametric models to take a probabilistic approach to image prediction. We generate probability distributions over sequentially predicted images and propagate uncertainty through time to generate a confidence metric for our predictions. Gaussian Processes are used for their data efficiency and ability to readily incorporate new training data online. We showcase our method by successfully predicting future frames of a smooth fluid simulation environment.

Flow-level network measurement is critical to many network applications. Among various measurement tasks, packet loss detection and heavy-hitter detection are two most important measurement tasks, which we call the two key tasks. In practice, the two key tasks are often required at the same time, but existing works seldom handle both tasks. In this paper, we design ChameleMon to support the two key tasks simultaneously. One key design/novelty of ChameleMon is to shift measurement attention as network state changes, through two dimensions of dynamics: 1) dynamically allocating memory between the two key tasks; 2) dynamically monitoring the flows of importance. To realize the key design, we propose a key technique, leveraging Fermat's little theorem to devise a flexible data structure, namely FermatSketch. FermatSketch is dividable, additive, and subtractive, supporting the two key tasks. We have fully implemented a ChameleMon prototype on a testbed with a Fat-tree topology. We conduct extensive experiments and the results show ChameleMon supports the two key tasks with low memory/bandwidth overhead, and more importantly, it can automatically shift measurement attention as network state changes.

We consider the problem of learning from data corrupted by underrepresentation bias, where positive examples are filtered from the data at different, unknown rates for a fixed number of sensitive groups. We show that with a small amount of unbiased data, we can efficiently estimate the group-wise drop-out parameters, even in settings where intersectional group membership makes learning each intersectional rate computationally infeasible. Using this estimate for the group-wise drop-out rate, we construct a re-weighting scheme that allows us to approximate the loss of any hypothesis on the true distribution, even if we only observe the empirical error on a biased sample. Finally, we present an algorithm encapsulating this learning and re-weighting process, and we provide strong PAC-style guarantees that, with high probability, our estimate of the risk of the hypothesis over the true distribution will be arbitrarily close to the true risk.

Interpretability of Deep Learning (DL) is a barrier to trustworthy AI. Despite great efforts made by the Explainable AI (XAI) community, explanations lack robustness -- indistinguishable input perturbations may lead to different XAI results. Thus, it is vital to assess how robust DL interpretability is, given an XAI method. In this paper, we identify several challenges that the state-of-the-art is unable to cope with collectively: i) existing metrics are not comprehensive; ii) XAI techniques are highly heterogeneous; iii) misinterpretations are normally rare events. To tackle these challenges, we introduce two black-box evaluation methods, concerning the worst-case interpretation discrepancy and a probabilistic notion of how robust in general, respectively. Genetic Algorithm (GA) with bespoke fitness function is used to solve constrained optimisation for efficient worst-case evaluation. Subset Simulation (SS), dedicated to estimate rare event probabilities, is used for evaluating overall robustness. Experiments show that the accuracy, sensitivity, and efficiency of our methods outperform the state-of-the-arts. Finally, we demonstrate two applications of our methods: ranking robust XAI methods and selecting training schemes to improve both classification and interpretation robustness.

This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.

北京阿比特科技有限公司