Treatment effect estimates are often available from randomized controlled trials as a single average treatment effect for a certain patient population. Estimates of the conditional average treatment effect (CATE) are more useful for individualized treatment decision making, but randomized trials are often too small to estimate the CATE. Examples in medical literature make use of the relative treatment effect (e.g. an odds-ratio) reported by randomized trials to estimate the CATE using large observational datasets. One approach to estimating these CATE models is by using the relative treatment effect as an offset, while estimating the covariate-specific untreated risk. We observe that the odds-ratios reported in randomized controlled trials are not the odds-ratios that are needed in offset models because trials often report the marginal odds-ratio. We introduce a constraint or regularizer to better use marginal odds-ratios from randomized controlled trials and find that under the standard observational causal inference assumptions this approach provides a consistent estimate of the CATE. Next, we show that the offset approach is not valid for CATE estimation in the presence of unobserved confounding. We study if the offset assumption and the marginal constraint lead to better approximations of the CATE relative to the alternative of using the average treatment effect estimate from the randomized trial. We empirically show that when the underlying CATE has sufficient variation, the constraint and offset approaches lead to closer approximations to the CATE.
Auditory spatial attention detection (ASAD) aims to decode the attended spatial location with EEG in a multiple-speaker setting. ASAD methods are inspired by the brain lateralization of cortical neural responses during the processing of auditory spatial attention, and show promising performance for the task of auditory attention decoding (AAD) with neural recordings. In the previous ASAD methods, the spatial distribution of EEG electrodes is not fully exploited, which may limit the performance of these methods. In the present work, by transforming the original EEG channels into a two-dimensional (2D) spatial topological map, the EEG data is transformed into a three-dimensional (3D) arrangement containing spatial-temporal information. And then a 3D deep convolutional neural network (DenseNet-3D) is used to extract temporal and spatial features of the neural representation for the attended locations. The results show that the proposed method achieves higher decoding accuracy than the state-of-the-art (SOTA) method (94.4% compared to XANet's 90.6%) with 1-second decision window for the widely used KULeuven (KUL) dataset, and the code to implement our work is available on Github: //github.com/xuxiran/ASAD_DenseNet
In cluster randomized experiments, units are often recruited after the random cluster assignment, and data are only available for the recruited sample. Post-randomization recruitment can lead to selection bias, inducing systematic differences between the overall and the recruited populations, and between the recruited intervention and control arms. In this setting, we define causal estimands for the overall and the recruited populations. We first show that if units select their cluster independently of the treatment assignment, cluster randomization implies individual randomization in the overall population. We then prove that under the assumption of ignorable recruitment, the average treatment effect on the recruited population can be consistently estimated from the recruited sample using inverse probability weighting. Generally we cannot identify the average treatment effect on the overall population. Nonetheless, we show, via a principal stratification formulation, that one can use weighting of the recruited sample to identify treatment effects on two meaningful subpopulations of the overall population: units who would be recruited into the study regardless of the assignment, and units who would be recruited in the study under treatment but not under control. We develop a corresponding estimation strategy and a sensitivity analysis method for checking the ignorable recruitment assumption.
Tens of thousands of simultaneous hypothesis tests are routinely performed in genomic studies to identify differentially expressed genes. However, due to unmeasured confounders, many standard statistical approaches may be substantially biased. This paper investigates the large-scale hypothesis testing problem for multivariate generalized linear models in the presence of confounding effects. Under arbitrary confounding mechanisms, we propose a unified statistical estimation and inference framework that harnesses orthogonal structures and integrates linear projections into three key stages. It first leverages multivariate responses to separate marginal and uncorrelated confounding effects, recovering the confounding coefficients' column space. Subsequently, latent factors and primary effects are jointly estimated, utilizing $\ell_1$-regularization for sparsity while imposing orthogonality onto confounding coefficients. Finally, we incorporate projected and weighted bias-correction steps for hypothesis testing. Theoretically, we establish various effects' identification conditions and non-asymptotic error bounds. We show effective Type-I error control of asymptotic $z$-tests as sample and response sizes approach infinity. Numerical experiments demonstrate that the proposed method controls the false discovery rate by the Benjamini-Hochberg procedure and is more powerful than alternative methods. By comparing single-cell RNA-seq counts from two groups of samples, we demonstrate the suitability of adjusting confounding effects when significant covariates are absent from the model.
In settings where interference between units is possible, we define the prevalance of indirect effects to be the number of units who are affected by the treatment of others. This quantity does not fully identify an indirect effect, but may be used to show whether such effects are widely prevalent. Given a randomized experiment with binary-valued outcomes, methods are presented for conservative point estimation and one-sided interval estimation. No assumptions beyond randomization of treatment are required, allowing for usage in settings where models or assumptions on interference might be questionable. To show asymptotic coverage of our intervals in settings not covered by existing results, we provide a central limit theorem that combines local dependence and sampling without replacement. Consistency and minimax properties of the point estimator are shown as well. The approach is demonstrated on an experiment in which students were treated for a highly transmissible parasitic infection, for which we find that a significant fraction of students were affected by the treatment of schools other than their own.
Combinatorial optimization - a field of research addressing problems that feature strongly in a wealth of scientific and industrial contexts - has been identified as one of the core potential fields of applicability of quantum computers. It is still unclear, however, to what extent quantum algorithms can actually outperform classical algorithms for this type of problems. In this work, by resorting to computational learning theory and cryptographic notions, we prove that quantum computers feature an in-principle super-polynomial advantage over classical computers in approximating solutions to combinatorial optimization problems. Specifically, building on seminal work by Kearns and Valiant and introducing a new reduction, we identify special types of problems that are hard for classical computers to approximate up to polynomial factors. At the same time, we give a quantum algorithm that can efficiently approximate the optimal solution within a polynomial factor. The core of the quantum advantage discovered in this work is ultimately borrowed from Shor's quantum algorithm for factoring. Concretely, we prove a super-polynomial advantage for approximating special instances of the so-called integer programming problem. In doing so, we provide an explicit end-to-end construction for advantage bearing instances. This result shows that quantum devices have, in principle, the power to approximate combinatorial optimization solutions beyond the reach of classical efficient algorithms. Our results also give clear guidance on how to construct such advantage-bearing problem instances.
The vast majority of reduced-order models (ROMs) first obtain a low dimensional representation of the problem from high-dimensional model (HDM) training data which is afterwards used to obtain a system of reduced complexity. Unfortunately, convection-dominated problems generally have a slowly decaying Kolmogorov n-width, which makes obtaining an accurate ROM built solely from training data very challenging. The accuracy of a ROM can be improved through enrichment with HDM solutions; however, due to the large computational expense of HDM evaluations for complex problems, they can only be used parsimoniously to obtain relevant computational savings. In this work, we exploit the local spatial and temporal coherence often exhibited by these problems to derive an accurate, cost-efficient approach that repeatedly combines HDM and ROM evaluations without a separate training phase. Our approach obtains solutions at a given time step by either fully solving the HDM or by combining partial HDM and ROM solves. A dynamic sampling procedure identifies regions that require the HDM solution for global accuracy and the reminder of the flow is reconstructed using the ROM. Moreover, solutions combining both HDM and ROM solves use spatial filtering to eliminate potential spurious oscillations that may develop. We test the proposed method on inviscid compressible flow problems and demonstrate speedups up to an order of magnitude.
Model order reduction provides low-complexity high-fidelity surrogate models that allow rapid and accurate solutions of parametric differential equations. The development of reduced order models for parametric nonlinear Hamiltonian systems is challenged by several factors: (i) the geometric structure encoding the physical properties of the dynamics; (ii) the slowly decaying Kolmogorov n-width of conservative dynamics; (iii) the gradient structure of the nonlinear flow velocity; (iv) high variations in the numerical rank of the state as a function of time and parameters. We propose to address these aspects via a structure-preserving adaptive approach that combines symplectic dynamical low-rank approximation with adaptive gradient-preserving hyper-reduction and parameters sampling. Additionally, we propose to vary in time the dimensions of both the reduced basis space and the hyper-reduction space by monitoring the quality of the reduced solution via an error indicator related to the projection error of the Hamiltonian vector field. The resulting adaptive hyper-reduced models preserve the geometric structure of the Hamiltonian flow, do not rely on prior information on the dynamics, and can be solved at a cost that is linear in the dimension of the full order model and linear in the number of test parameters. Numerical experiments demonstrate the improved performances of the fully adaptive models compared to the original and reduced models.
We propose a novel estimation approach for a general class of semi-parametric time series models where the conditional expectation is modeled through a parametric function. The proposed class of estimators is based on a Gaussian quasi-likelihood function and it relies on the specification of a parametric pseudo-variance that can contain parametric restrictions with respect to the conditional expectation. The specification of the pseudo-variance and the parametric restrictions follow naturally in observation-driven models with bounds in the support of the observable process, such as count processes and double-bounded time series. We derive the asymptotic properties of the estimators and a validity test for the parameter restrictions. We show that the results remain valid irrespective of the correct specification of the pseudo-variance. The key advantage of the restricted estimators is that they can achieve higher efficiency compared to alternative quasi-likelihood methods that are available in the literature. Furthermore, the testing approach can be used to build specification tests for parametric time series models. We illustrate the practical use of the methodology in a simulation study and two empirical applications featuring integer-valued autoregressive processes, where assumptions on the dispersion of the thinning operator are formally tested, and autoregressions for double-bounded data with application to a realized correlation time series.
We analyse a numerical scheme for a system arising from a novel description of the standard elastic--perfectly plastic response. The elastic--perfectly plastic response is described via rate-type equations that do not make use of the standard elastic-plastic decomposition, and the model does not require the use of variational inequalities. Furthermore, the model naturally includes the evolution equation for temperature. We present a low order discretisation based on the finite element method. Under certain restrictions on the mesh we subsequently prove the existence of discrete solutions, and we discuss the stability properties of the numerical scheme. The analysis is supplemented with computational examples.
Confounder selection, namely choosing a set of covariates to control for confounding between a treatment and an outcome, is arguably the most important step in the design of observational studies. Previous methods, such as Pearl's celebrated back-door criterion, typically require pre-specifying a causal graph, which can often be difficult in practice. We propose an interactive procedure for confounder selection that does not require pre-specifying the graph or the set of observed variables. This procedure iteratively expands the causal graph by finding what we call "primary adjustment sets" for a pair of possibly confounded variables. This can be viewed as inverting a sequence of latent projections of the underlying causal graph. Structural information in the form of primary adjustment sets is elicited from the user, bit by bit, until either a set of covariates are found to control for confounding or it can be determined that no such set exists. We show that if the user correctly specifies the primary adjustment sets in every step, our procedure is both sound and complete.